Semester	IV	Corse Title	Engineering Mathematics-IV	Course Code	18MAT-41	
Teaching Period	50 Hours	L-T-P-TL	$\mathbf{2 - 1 - 0 - 3}$	SEE	3 Hours	
CIE	40 Marks	SEE	$\mathbf{6 0}$ Marks	Total	100 Marks	

Course objectives:

- To provide an insight into applications of complex variables, conformal mapping and special functions arising in potential theory, quantum mechanics, heat conduction and field theory.
- To develop probability distribution of discrete, continuous random variables and joint probability distribution occurring in digital signal processing, design engineering and microwave engineering.

:: Module-1 :: (10 Hours)

Calculus of complex functions: Review of function of a complex variable, limits, continuity, and differentiability. Analytic functions: Cauchy-Riemann equations in Cartesian and polar forms and consequences. Construction of analytic functions (Milne Thomson method problems).

RBTL- L1, L2

:: Module-2 :: (10 Hours)

Conformal transformations: Introduction. Discussion of transformationsw $\mathrm{w}=\mathrm{Z}^{2}, \mathrm{w}=\mathrm{e}^{\mathrm{z}}, \mathrm{w}=\mathrm{z}+\frac{1}{\mathrm{z}^{\prime}, z \neq 0}$. Bilinear Transformations- Problems.
Complex integration: Line integral of a complex function-Cauchy's theorem and Cauchy's integral formula and problems. RBTL-L1, L2
:: Module-3 :: (10 Hours)

Probability Distributions: Basic concepts of probability theory. Random variables (discrete and continuous), probability mass/density functions. Binomial, Poisson, exponential and normal distributions and problems.

RBTL-L1, L3

> :: Module-4 :: (10 Hours)

Statistical Methods: Correlation and regression-Karl Pearson's coefficient of correlation -problems. Regression analysislines of regression -problems.
Curve Fitting: Curve fitting by the method of least squares- fitting the curves of the form $-y=a x+b, y=a x^{b}$ and $y=a x^{2}+b x+c$.
RBTL-L2, L3
:: Module-5 :: :(10 Hours)

Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation and covariance.
Sampling Theory: Introduction to sampling distributions, standard error, Type-I and Type-II errors. Test of hypothesis for means. Stochastic process: Stochastic processes, probability vector, stochastic matrices, fixed points, regular stochastic matrices, Markov chains, higher transition probability - simple problems.

RBTL-L2, L3, L4

L1- Remembering, L2- Understanding, L3-Applying, L4-Analyzing.

Course outcomes:

At the end of the course the student will be able to:

- CO1: Use the concepts of analytic function and complex potentials to solve the problems arising in electromagnetic field theory.
- CO2: make use of conformal transformation and complex integral arising in aerofoil theory, fluid flow visualization and image processing.
- CO3: Apply discrete and continuous probability distributions in analyzing the probability models arising in engineering applications.
- CO4: Make use of the correlation and regression analysis to fit a suitable mathematical model for the statistical data.
- CO5: Construct joint probability distributions and demonstrate the validity of testing the hypothesis.

Question paper pattern

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of three sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.

The students will have to answer five full questions, selecting one full question from each module.

Textbooks

1. Advanced Engineering Mathematics, E. Kreyszig, John Wiley \& Sons, $10^{\text {th }}$ Edition, 2016.
2. Higher Engineering Mathematics, B.S. Grewal, Khanna Publishers, $44^{\text {th }}$ Edition, 2017.

Reference Books

1. Higher Engineering Mathematics, B.V.Ramana, McGraw Hill, $11^{\text {th }}$ Edition, 2010.
2. A Text Book of Engineering Mathematics, N.P.Bali and Manish Goyal, Laxmi Publications, 2014.
module -oI
Calculus of complex functions I
A number of the form $z=x+i y$ where $x, y \in R$ is called a complex number.
x is called real part $\propto z$
y is called imaginary part of z $i=\sqrt{-1}$ and $i^{2}=-1$
If $z=x+i y$ is a complex number then $\bar{z}=x-i y$ is called Conjugate of complex number.

NOTED:
(c) $e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+$
(2) $e^{i x}=\cos x+i \sin x$
(3) $e^{-i x}=\cos x-i \sin x$
(4) $\operatorname{sini} x=i \sinh x$
(5) $\operatorname{cosi} x=\cosh x$

NOTE (2):
Demoiver's Theorem:-

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

where n is a real number
Function of a Complex Variable, Limit, continuity and differentiability Function of a complex Variable
$\omega=f(z)$ is called a function of complex variable Z. ω is said to be single valued or many valued function of z there comypangy one or morethan one value of ω. Since $z=x+i y \quad \theta \quad z=r e^{i \theta}$
$\omega=f(z)=u(x, y)+i v(x, y)[$ coaterimin

$$
\begin{aligned}
& \omega=f(z)=u(x, y)+i v(x, y)[\text { coaterims } \\
& \omega=f(z)=u(r, \theta)+i v(r, \theta)[\text { pola fang }] \text {] }
\end{aligned}
$$

Limit: A complex valued function $f(z)$ is defined in the neighbourhood of a point z_{0} is sard to have a dimit a as $z \rightarrow z_{0}$, if for every $\varepsilon>0$ however Small f a tue real number $\delta \ni ;$ $|f(z)-川|<\varepsilon$ when $\left|z-z_{0}\right|<\delta$, This is written as $\lim _{z \rightarrow z_{0}} f(z)=\ell$
Continuity: A complex valued function $f(z)$ is said to be continuous at $z=z_{0}$, if $f\left(z_{0}\right)$ exists and $\lim _{z \rightarrow z_{0}} f(z)=f(z)$ i.e $\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon$ when $\left|z-z_{0}\right|<0$.

Differentiability: A Complex valued function $f(z)$ is said to be differentiable at $z=z_{0}$, if $\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ exits and y unique.

Suppose we cordite $\delta_{z}=z-z_{0}$ then $z \rightarrow z_{0}, \delta z \rightarrow 0$ hence

$$
f^{\prime}\left(z_{0}\right)=\lim _{\delta z \rightarrow 0} \frac{f\left(\delta z+z_{0}\right)-f\left(z_{0}\right)}{\delta z}
$$

Analytic function and Connected theorems
A complex valued function $\omega=f(z)$ is said to bo analytic at a point $z=z_{0}$ if $\frac{d \omega}{d z}=f^{\prime}(z)=1+f(z+\delta z)-f(z)$ exists and is unique at z_{0} and in the neighbourhood of z_{0}.
Theorem (1):-
[Cauchy - Riemann equations in the cartesian form]

Statement: The necessary conditions that the function $\omega=f(z)=u(x, y)$ tiv (x, y) may be analytic at any point $z=x+i y$ is that F four Contineous firgt order partial derivatives $\frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ and satisfy the $\frac{\partial x}{}$, equations $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$
(9) $u_{x}=v_{y}$ and $v_{x}=-u_{y}$

These are known as $C-R$ equations.
prop: Let $f(z)$ be analytic at the point $z=x+i y$ and hence
by definition,

$$
f^{\prime}(z)=\operatorname{lt}_{\delta z \rightarrow 0} \frac{f(z+\delta z)-f(z)}{\delta z} \text { exists } \$
$$

unique.
In Cartesian form

$$
f(z)=u(x, y)+\operatorname{iv}(x, y)
$$

and δ_{2} is the increment in z coarespanding to the increments δx and δy in x \& y.
$f(z)=u(x, y)+i v(x, y)$ $f(z+\delta z)=u(x+\delta x, y+\delta y)+i v(x+\delta x, y+\delta y)$ w.K.T $f^{\prime}(z)=d t=\frac{f(z+\delta z)-f(z)}{\delta z \rightarrow 0}$ $f^{\prime}(z)=$ lt $_{\delta z \rightarrow 0}[u(x+\delta x, y+\delta y)+i v(x+\delta x, y+\delta y)$ δz
$f^{\prime}(z)=\operatorname{lt}_{\delta z \rightarrow 0}[u(x+\delta x, y+\delta y)-u(x, y)]+i[v(x+\delta x)$

$$
y+\delta y)-v(x, y)
$$

$=\operatorname{dt}_{\delta z \rightarrow 0}\left[\frac{u(x+\delta x, y+\delta y)-u(x, y)}{\sqrt{z}}+i\right.$ et $[\underline{\delta c}$

$$
\begin{equation*}
\frac{(x+\delta x, y+\delta y)-v(x, y)]}{\delta z} \tag{1}
\end{equation*}
$$

Now $\delta z=z+\delta z-z$ cohere $z=x+i y$ $\delta z=x+i y+\delta x+i \delta y-(x+i y)$
$\delta z=p x+i y+\delta x+i \delta y-p x-i y$

$$
\delta z=\delta x+i \delta y
$$

Since δ_{2} tends to zero we have two cases
call (a): Let $\delta y=0$ So that $\delta z=\delta x$ and $\delta z \rightarrow 0$ then $\delta x \rightarrow 0$
equation (1) becomes
$f^{\prime}(z)=\operatorname{lt}_{\delta x \rightarrow 0} \frac{[u(x+\delta x, y)-u(x, y)]+i l t}{\delta x}+\frac{[v(x+\delta x, y)-v(x, y)]}{\delta x}$

These limits form the bayic definition are the partial derivative of U \& v woo. to x.

$$
\begin{equation*}
\therefore f^{\prime}(z)=\frac{\partial \varphi}{\partial x}+i \frac{\partial V}{\partial x} \tag{2}
\end{equation*}
$$

Cale(2) Let $\delta x=0$ So that $\delta_{z}=i \delta y$ and $\delta_{z} \rightarrow 0$ then i $\delta y \rightarrow 0$ or $\delta y \rightarrow 0$ equation (1) becomes

$$
f^{\prime}(z)=\operatorname{lt}_{\delta y \rightarrow 0} \frac{[u(x, y+\delta y)-u(x, y)]+i t_{\delta y \rightarrow 0}^{i \delta y}[v(x, y+\delta y)-v(x, y)]}{i \delta y}
$$

NOTE: $\left[u^{\circ} \frac{\text { is in the denominator }}{}\right.$ \therefore we need to rationalize]

$$
\begin{align*}
& \quad \frac{i}{i}=-i \\
& =-i u t{ }^{\delta y} \rightarrow 0 \frac{u(x, y+\delta y)-u(x, 4)]}{\delta y}+u t[v(x, y+\delta y)-v(x, y)] \\
& f^{\prime}(z)=-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y} \\
& f^{\prime}(z)=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y} \tag{2}
\end{align*}
$$

equate the RHS $\$$ (2) and (3)

$$
\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-\frac{i \partial u}{\partial y}
$$

equating the real part and imaginary part

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
$$

(6)

$$
u_{x}=v_{y} \text { and } v_{x}=-u_{y}
$$

The are known as $O-R$ equations

Theorem -2:
[Cauchy Riemann equation in polar form]

Statement: If $f(z)=f\left(r 0^{i \theta}\right)=u(r, \theta)$ fiver, $\left.\theta\right)$ is analytic at a point z, then there exists four contincoy firgt order partial derivatives $\frac{\partial u}{\partial r}, \partial u$,
$\frac{\partial V}{\partial r}, \frac{\partial v}{\partial \theta}$ \& Satisfig the equations

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \text { and } \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}
$$

(96) rut $=v_{\theta}$ and $r v_{r}=-u_{\theta}$ These are known as Gauchy-Riemann equations in the polar form.

Roof: Let $f(z)$ be analytic at a point $z=r e^{i \theta}$ and hence by definition

$$
f^{\prime}(z)=d_{\delta z \rightarrow 0} \frac{f(z+\delta z)-f(z)}{\delta z}
$$

exists and unique
In the polar form $f(z)=u(r, \theta)+i v(r, \theta)$ $\&$ let δ_{2} be the increment in z corresponding to the increments or, $\delta \theta$ in r, θ.

$$
f^{\prime}(z)=\int_{\delta z \rightarrow 0}^{d t}[u(r+\delta r, \theta+\delta \theta)+i v(r+\delta r, \theta+\delta \theta)]-[u(r, \theta)+i v(r, \theta)]
$$

Since δ_{z} tend to zero we have 2 curly
care 0: let $\delta \theta=0$ so that $\delta z=e^{i \theta}$. δr and $\delta_{z} \rightarrow 0$ then $\delta_{r} \rightarrow 0$
Now equation (1) becomes
$f^{\prime}(z)=\operatorname{lt}_{\delta x \rightarrow 0} \frac{[u(r+\delta r, \theta)-u(r, \theta)]}{e^{i \theta} \delta \delta}+i$ ut ${ }_{\delta x \rightarrow 0} \frac{[v(r+\delta r, \theta)-v(r, \theta)]}{e^{i \theta} \cdot \delta r}$

$$
\begin{align*}
& =\frac{1}{e^{i \theta}}\left\{{ } _ { \delta t \rightarrow 0 } \left[\frac{u(r+\delta r, \theta)}{\delta r}\right.\right. \tag{2}\\
f^{\prime}(z) & =e^{-i \theta}\left[\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}\right]-
\end{align*}
$$

Care (2): Let $\delta r=0$ so that $\delta z=r i e^{i \theta} \delta \theta$

$$
\begin{aligned}
& \delta z \rightarrow 0 \text { then } \delta \theta \rightarrow 0 \\
& \text { Now en (1) becomes } \\
& f^{\prime}(z)=\operatorname{lt}_{\delta \theta \rightarrow 0} \frac{[u(r, \theta+\delta \theta)-u(r, \theta)]}{i r e^{i \theta} \delta \theta}+\operatorname{lt}_{\delta \theta \rightarrow 0}{ }^{\text {it }} \\
& =\frac{1}{r e^{i \theta}}\left\{\begin{array}{l}
\text { vt }_{\delta \theta \rightarrow 0} \frac{[u(r, \theta+\delta \theta)-u(r, \theta)]}{i \delta \theta}+\frac{\mu t}{\delta \theta \rightarrow 0}
\end{array}\right.
\end{aligned}
$$

[NOTE: i is in the denominator, \therefore we need to rationalize]

$$
\begin{align*}
& \frac{1}{i}=-i \\
& f^{\prime}(2)=\frac{1}{\gamma e^{i \theta}}\left\{\begin{array}{l}
-i \mu_{\delta \theta \rightarrow 0}[u(r, \theta+\delta \theta)-u(r, \theta)] \\
\delta \theta
\end{array}+\mu t\right. \\
& =\frac{1}{\gamma e^{i \theta}}\left[-i \frac{\partial u}{\partial \theta}+\frac{\partial v}{\partial \theta}\right] \\
& =\frac{e^{-i \theta}}{\gamma}\left[-i \frac{\partial u}{\partial \theta}+\frac{\partial V}{\partial \theta}\right] \\
& f^{\prime}(z)=\frac{e^{-i \theta}}{\gamma}\left[\frac{\partial v}{\partial \theta}-i \frac{\partial u}{\partial \theta}\right] \tag{3}
\end{align*}
$$

equate the RHS op (2) \& (3)

$$
\begin{aligned}
e^{-i \theta}\left[\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r}\right] & =\frac{\theta^{-i \theta}}{r}\left[\frac{\partial v}{\partial \theta}-i \partial u\right. \\
\frac{\partial u}{\partial r}+i \frac{\partial v}{\partial r} & =\frac{1}{r}[\partial v / \partial \theta-i \partial u / \partial \theta]
\end{aligned}
$$

equating the real \& imaginary
parts

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \text { and } \frac{\partial v}{\partial r}=\frac{-1 \partial u}{\partial \partial \theta}
$$

(09) $U_{r}=\frac{1}{r} V_{\theta}$ and $V_{r}=-\frac{1}{r} U_{\theta}$

$$
\left[r U_{r}=V_{\theta} \text { and } r V_{r}=-U_{\theta}\right.
$$

There are known as Cauchy Riemann equation in polar form.

Properties of Analytic functions
Harmonic function:-
A function ϕ is said to be harmonic if it satisfies Laplace's equation

$$
\nabla^{2} \phi=0
$$

In the Cartesian form $\phi(x, y)$ is harmonic

$$
\text { if } \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0
$$

In the polar form $\phi(r, \theta)$ is harmonic if $\frac{\partial^{2} \phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}=0$

Harmonic property:
statement: The real and imaginary parts of an analytic function are harmonic.
proof:
In cartesian form
Let $f(z)=u(x, y)+i v(x, y)$ be analytic we shall show that u and v satisfy Laplace equation in the cartesian form

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0
$$

Since $f(2)$ is analytic we have cauchy-Riemann equation?

$$
\begin{align*}
& \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \tag{1}\\
& \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} \tag{2}
\end{align*}
$$

Differentiating (1) W.r. to x \&ew.r.to y partially we get

$$
\begin{aligned}
& \text { (1) } \Rightarrow \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial v}{\partial x \partial y} \\
& \text { (2) } \Rightarrow \frac{\partial^{2} v}{\partial y \partial x}=-\frac{\partial^{2} u}{\partial y^{2}}
\end{aligned}
$$

but $\frac{\partial^{2} v}{\partial x \partial y}=\frac{\partial^{2} v}{\partial y \partial x}$ is always true ξ hence we have

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}=-\frac{\partial^{2} u}{\partial y^{2}} \tag{or}
\end{equation*}
$$

$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \Rightarrow u$ is harmonic

Again differentiating (1) w. r. to y and (2) co.r. to x partially we get
(i) $\Rightarrow \frac{\partial^{2} u}{\partial y \partial x}=\frac{\partial^{2} v}{\partial y^{2}}$ and
(8) $\Rightarrow \frac{\partial^{2} v}{\partial x^{2}}=-\frac{\partial^{2} u}{\partial x \partial y}$
but $\frac{\partial^{2} u}{\partial y \partial x}=\frac{\partial^{2} u}{\partial x \partial y}$ is always true \& hence we have

$$
\frac{\partial^{2} v}{\partial y^{2}}=-\frac{\partial^{2} v}{\partial x^{2}}
$$

$\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0 \quad \therefore \quad v$ is harmonic
They we have proved real \& imaginary parts of analytic function when expressed in the Cartyian form satigfily the laplace's equation in cartesian form.
Wed
No In polar form:
Let $f(z)=u(r, \theta)+i v(r, \theta)$ be analytic. We shall show that $u \& V$ satisfies Laplace equations in polar form

$$
\frac{\partial^{2} \phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}=0
$$

we have Cauchy-Riemann equations in polar form

$$
\begin{equation*}
r \frac{\partial u}{\partial r}=\frac{\partial v}{\partial \theta} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
r \frac{\partial v}{\partial r}=-\frac{\partial u}{\partial \theta} \tag{2}
\end{equation*}
$$

D. (1) w. r. to r and (2) we to θ pastis

$$
\text { (1) } \Rightarrow \quad \begin{aligned}
& \frac{\partial^{2} u}{\partial r^{2}}+\frac{\partial u}{\partial r}=\frac{\partial^{2} v}{\partial r \partial \theta} \\
& \text { (2) } \Rightarrow \quad \frac{}{\partial \partial^{2} v} \partial=-\frac{\partial^{2} u}{\partial \theta^{2}} \Rightarrow \\
& \frac{\partial^{2} v}{\partial \theta \partial r}=-\frac{1}{r} \frac{\partial^{2} u}{\partial \theta^{2}}
\end{aligned}
$$

But $\frac{\partial^{2} v}{\partial r \partial \theta}=\frac{\partial^{2} v}{\partial \theta \partial r}$ is always true we have

$$
r \frac{\partial^{2} u}{\partial r^{2}}+\frac{\partial u}{\partial r}=-\frac{1}{r} \frac{\partial^{2} u}{\partial \theta^{2}}
$$

\div by r on B.S

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}=-\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} \\
& \frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
\end{aligned}
$$

\therefore u satisfies the laplace equation in polar form
$\therefore u$ is harmonic
D. (1) partially w. r to θ and (2) w. r. to r we have

$$
\begin{aligned}
& \text { (1) } \Rightarrow \frac{r \frac{\partial^{2} u}{\partial \theta \partial r}}{}=\frac{\partial^{2} v}{\partial \theta^{2}} \Rightarrow \frac{\partial^{2} u}{\partial \theta \partial r}=\frac{1}{r} \frac{\partial^{2} v}{\partial \theta^{2}} \\
& \text { (2) } \Rightarrow r \cdot \frac{\partial^{2} v}{\partial r^{2}}+\frac{\partial V}{\partial r}=\frac{-\partial^{2} u}{\partial r \partial \theta} \Rightarrow-\frac{\partial^{2} v}{\partial r^{2}}-\frac{\partial V}{\partial r}=\frac{\partial^{2} u}{\partial r \partial \theta}
\end{aligned}
$$

but $\frac{\partial^{2} u}{\partial \theta \partial r}=\frac{\partial^{2} u}{\partial r \partial \theta}$ if always true
we have

$$
\begin{aligned}
& \frac{1}{r} \frac{\partial^{2} v}{\partial \theta^{2}}=-r \frac{\partial^{2} v}{\partial r^{2}}-\frac{\partial v}{\partial r} \\
& \div B \cdot \beta b y r \\
& \frac{1}{r^{2}} \frac{\partial^{2} v}{\partial \theta}=-\frac{\partial^{2} v}{\partial r^{2}}-\frac{1}{r} \frac{\partial r}{\partial r} \\
& \frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r} \frac{\partial v}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} v}{\partial \theta^{2}}=0
\end{aligned}
$$

V satisfies Laplace equation in polasto $\therefore V$ is harmonic
Thy we have proved u and Y are harmonic

Problem 8
1ype-1: Finding the derivative of an analytic function
working procedure
(1) Given $\omega=f(z)$, we substituting $z=x+i y$ or $z=r e^{i \theta}$ to find the real and imaginary parts u and v as a function x, y (7) r, θ.
(2) we find fins order partial derivative and Verify $C-R$ equations in the Cortyian or polar form to conclude that $f(z)$ is analytic
(3) To find the derivative of $f(2)$ we make ye of the fundamental results derived while establishing $C-R$ equation They are as follows

$$
\begin{aligned}
& f^{\prime}(z)=u_{x}+i v_{x} \quad[\text { cartesian form }] \\
& f^{\prime}(z)=e^{-i \theta}\left(u_{r}+i v_{r}\right)[\text { polar form }] \\
& \text { substitute for the }
\end{aligned}
$$

(1) We substitute for the partial derive -vel and rearrange as a function of atiy (or) reit which is z, with the result $f^{\prime}(z)$ is obtained as a function of z.
(1) Show that $\omega=z+e^{z}$ is analytic and hence find $\frac{d w}{d z}$
Sone By data $\omega=z+e^{z}$.

$$
\begin{aligned}
\text { data } & \omega=z+e^{x+i v} \\
\text { univ } & =x+i y+e^{x+i y} \\
& =x+i y+e^{x} \cdot e^{i y} \\
\text { univ } & =x+i y+e^{x}(\cos y+i \sin y) \\
u+i v & =x+i y+e^{x} \cos y+i e^{x} \sin y \\
& =\left(x+e^{x} \cos y\right)+i\left(y+e^{x} \sin y\right)
\end{aligned}
$$

$$
\begin{array}{ll}
u=x+e^{x} \cos y & v=y+e^{x} \sin y \\
u_{x}=1+e^{x} \cos y & v_{x}=e^{x} \sin y \\
u_{y}=-e^{x} \sin y & v_{y}=1+e^{x} \cos y
\end{array}
$$

W.K.T C-R eqn in the Cartegian form
$u_{x}=v_{y}$ and $v_{x}=-U_{y}$ are Satigfied

Thay $\omega=z+e^{z}$ is analytic we have $\frac{d w}{d z}=f^{\prime}(z)=U_{x}+i v_{x}$

$$
\begin{aligned}
\frac{d \omega}{d z} & =\left(1+e^{x} \cos y\right)+i\left(e^{x} \sin y\right) \\
& =1+e^{x}(\cos y+i \sin y) \\
& =1+e^{x} e^{i y} \\
& =1+e^{x+i y} \\
\frac{d \omega}{d z} & =1+e^{z} \quad \text { Sinne } z=x+i y
\end{aligned}
$$

(2) S.t $f(z)=\cosh z$ is analytic and hence find $f^{\prime}(z)$

Soln:

$$
\begin{aligned}
& f(z)=\cosh z \quad \cosh z=\operatorname{cosiz} \\
& u+i v=\cosh (x+i y) \quad \int \quad i^{2}=-1 \\
& \begin{array}{l}
=\cos i(x+i y) \\
=\cos \left(i x+i^{2} y\right)
\end{array} \quad\left\{\begin{array}{l}
\text { Since } \cosh x=\operatorname{cosix} \\
\sin i x=i \sinh x
\end{array}\right. \\
& =\cos (i x-y) \\
& \text { w.K.T } \cos (A-B)=\cos A \cos B+\sin A \sin B \\
& =\operatorname{cosix} \cos y+\sin i x \sin y \\
& \text { utiv }=\cosh x \cos y+i \sinh x \sin y \\
& u=\cosh x \cos y \quad v=\sinh x \sin y
\end{aligned}
$$

$$
\begin{array}{ll}
u_{x}=\sinh x \cos y & v_{x}=\cosh x \sin y \\
u_{y}=-\cosh x \sin y & v_{y}=\sinh x \cos y
\end{array}
$$

$\therefore C-R$ eqns $u_{x}=V_{y}$ \& $V_{x}=-u_{y}$ are satisfied

Thy $f(2)$ is analytic we have $\frac{d u}{d z}=f^{\prime}(z)=4 x+i v x$

$$
\begin{aligned}
f^{\prime}(z) & =\sinh x \cos y+i \cosh x \sin y \\
& x^{14} \varepsilon \div \text { by } \text { in the RHS we have } \\
f^{\prime}(z) & =\frac{1}{i}\left[i \sinh x \cos y+i^{2} \cosh x \sin y\right] \\
& =\frac{1}{i}[i \sinh x \cos y-\cosh x \sin y] \\
& =\frac{1}{i}[\sin i x \cos y-\operatorname{cosix} \sin y]
\end{aligned}
$$

It is in the form of

$$
\begin{aligned}
& \sin A \cos B-\cos A \operatorname{Sin} B=\operatorname{Sin}(A-B) \\
= & \frac{1}{i}[\sin (i x-y)] \\
= & \frac{1}{i} \sin i(x+i y) \\
= & =k \cdot T \sin i x=i \sinh x \\
= & \frac{1}{1} \times 1 \sinh (x+i y) \\
= & \sinh (x+i y) \quad \operatorname{since} z=x+i y \\
z= & \sinh z
\end{aligned}
$$

$$
=\frac{1}{i} \sin i(x+i y)
$$

$$
=\frac{1}{y} x / \sinh (x+i y)
$$

$$
=\sinh (x+i y)
$$

$$
f^{\prime}(z)=\sinh z
$$

$$
\therefore \frac{d \omega}{d z}=\sinh x
$$

(3) S.T $f(z)=z^{n}$, where n is a tue integer is analytic and hond find ifs derivative

Sol: $f(z)=z^{n}$
Take $z=r e^{i \theta}$ we have

$$
\begin{aligned}
& u+i v=\left(r e^{i \theta}\right)^{n} \\
& u+i v=r^{n}\left(e^{i \theta}\right)^{n} \\
& \\
& =r^{n} e^{i n \theta} \quad\left\{\begin{array}{l}
\omega \cdot k \cdot T \\
e^{i \theta}=\cos \theta+i \sin \theta
\end{array}\right. \\
& u+i v=r^{n}(\cos n \theta+i \sin n \theta) \\
& u+i v=r^{n} \cos n \theta+i r^{n} \sin n \theta \\
& u=r^{n} \cos n \theta \quad v=r^{n} \sin n \theta \\
& u_{r}=n r^{n-1} \cos n \theta \quad v_{r}=n r^{n-1} \sin n \theta \\
& u_{\theta}=-r^{n} n \sin n \theta \quad v \theta=n r^{n} \cos n \theta
\end{aligned}
$$

$C-R$ eqn in polar form

$$
r u_{r}=V_{\theta} \text { \& } r V_{r r}=-u_{\theta}
$$

are satisfied

$$
\begin{aligned}
V_{r} & =n r^{n-1} \sin n \theta \\
r V_{r} & =r\left(n r^{n-1} \sin n \theta\right) \\
& =n r^{1+n-1} \sin n \theta \\
& =n r^{n} \sin n \theta \\
\nu_{r} & =-u_{\theta}
\end{aligned}
$$

$$
\begin{array}{l|l|l}
u_{r r}=n r^{n-1} \cos n \theta \\
r u_{r}=\gamma\left(n r^{n-1} \operatorname{co}\right. & \sin \theta) \\
r u_{r}=n r^{1+n t} \cos & n \theta \\
r u_{q}=n r^{n} \cos n & \\
r u_{r}=V_{\theta} &
\end{array}
$$

Thus $f(z)=z^{n}$ y analytic we have $f^{\prime}(z)=e^{-i \theta}\left(u_{r}+i v_{\sigma}\right)$

$$
\begin{aligned}
& f^{\prime}(z)=e^{-i \theta}\left(n r^{n-1} \cos n \theta+i n r^{n-1} \sin n \theta\right) \\
&=n r^{n-1} e^{-i \theta}(\cos n \theta+i \sin n \theta) \\
&=n r^{n-1} e^{-i \theta} e^{i n \theta} \\
&=n r^{n-1} e^{i \theta(-1+n)} \\
&=n r^{n-1} e^{i \theta(n-1)} \\
&=n r^{n-1}\left(e^{i \theta}\right)^{n-1} \\
&=n\left(r e^{i \theta}\right)^{n-1} \quad \text { since } z=r e^{i \theta} \\
& f^{\prime}(z)=n z^{n-1} \\
& \therefore f^{\prime}(z)=n z^{n-1}
\end{aligned}
$$

(4) S.T $f(z)=\sin z$ is analytic and hence H.W find $f^{\prime}(z)$.

Son: By data

$$
\begin{aligned}
& f(z)=\sin z \\
& f(z)=\sin (x+i y)
\end{aligned}
$$

w.K.T $\sin (A+B)=\sin A \cos B+\cos A \sin B$
$\operatorname{sn} \theta)$
$n \theta$

$$
\begin{aligned}
& f(z)=\sin x \operatorname{cosiy}+\cos x \sin i y \\
& \omega \cdot k \cdot T \quad \sin i \theta=i \sinh \theta \\
& \operatorname{cosi\theta }=\cosh \theta \\
& u+i v=\sin x \cosh y+\cos x \sinh y \\
& u+i v=\sin x \cosh y+i \cos x \sinh y
\end{aligned}
$$

$$
\begin{aligned}
& u=\sin x \cosh y \quad \& \quad V=\cos x \sinh y \\
& u_{x}=\cos x \cosh y \quad \& \quad V_{x}=-\sin x \sinh y \\
& u_{y}=\sin x \sinh y v_{y}=\cos x \cosh y
\end{aligned}
$$

$$
C-R \text { equations } u_{x}=v_{y} \text { and } v_{x}=-u_{y}
$$

are satizfied

They $f(z)$ is analytic we have $f^{\prime}(z)=U_{x}+i v_{x}$

$$
\begin{aligned}
= & \cos x \cosh y+i(-\sin x \sinh y) \\
= & \cos x \cosh y-i \sin x \sinh y \\
= & \cos x \cosh y-\sin x(i \sinh y) \\
f^{\prime}(z)= & \cos x \operatorname{cosi} y-\sin x \sin (i y) \\
& \cos A \cos B-\sin A \sin B=\cos (A+B) \\
= & \cos (x+i y) \quad \text { since } z=x+i y \\
f^{\prime}(z)= & \cos z \quad
\end{aligned}
$$

(5) S.T $\omega=\operatorname{dog} z, \quad z \neq 0$ is analytic $\&$ hence find $\frac{d \omega}{d z}$
Sole By data

$$
\omega=\log z
$$

Taking $z=r e^{i \theta}$

$$
\begin{aligned}
u+i v & =\log \left(r e^{i \theta}\right) \\
& =\log r+\log e^{i \theta} \\
& =\log r+i \theta \log _{e} \quad \quad\left(\log _{e}=1\right) \\
\text { univ } & =\log r+i \theta
\end{aligned}
$$

$$
\begin{array}{ll}
u=\log r & V=\theta \\
u_{r}=\frac{1}{r} & v_{r}=0 \\
u_{\theta}=0 & v_{\theta}=1
\end{array}
$$

$C-R$ equations in the polar form $r u_{r}=v_{\theta}$ \& $r V_{r}=-U_{\theta}$ are satisfied Thus $f(z)$ (क) $\omega=\log z$ is analytic we have

$$
\begin{aligned}
& f^{\prime}(z)=e^{-i \theta}\left(u_{r}+i v_{r}\right) \\
&=e^{-i \theta}\left(\frac{1}{r}+i(0)\right) \\
&=e^{-i \theta}\left(\frac{1}{r}\right) \\
&=\frac{1}{r e^{i \theta}} \\
& \begin{aligned}
f^{\prime}(z) & =\frac{1}{z}
\end{aligned}
\end{aligned}
$$

(6) S.T $\omega=Z \bar{Z}$ is not analytic

Son' By data $\omega=z \bar{z}$

$$
\begin{aligned}
z & =x+i y \\
\bar{z} & =x-i y \\
u+i v & =(x+i y)(x-i y) \\
& =x^{2}-i^{2} y^{2} \\
& =x^{2}-(-1) y^{2} \\
& =x^{2}+y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& u=x^{2}+y^{2} \quad v=0 \\
& u_{x}=2 x, \quad u_{y}=2 y ; \quad V_{x}=0, \quad V_{y}=0
\end{aligned}
$$

$C-R$ eqns $u_{x}=v_{y}$ and $v_{x}=-u_{y}$ are not satigfied.

$$
\omega=z \bar{z} \text { is not analytic }
$$

(7) S.T $f(z)=\left(r+\frac{k^{2}}{r}\right) \cos \theta+i\left(r-\frac{k^{2}}{r}\right) \sin \theta$, $r \neq 0$ is a regular function of $z=r e^{i \theta}$ also find $f^{\prime}(z)$

Sol $\quad f(z)=\left(r+\frac{k^{2}}{r}\right) \cos \theta+i\left(r-\frac{k^{2}}{r}\right) \sin \theta$

$$
u+i v=\left(r+\frac{k^{2}}{r}\right) \cos \theta+i\left(r-\frac{k^{2}}{r}\right) \sin \theta
$$

$$
u=\left(r+\frac{k^{2}}{r}\right) \cos \theta \quad V=\left(r-\frac{k^{2}}{r}\right) \sin \theta
$$

$$
U_{r}=\left(1+k^{2}\left(\frac{-1}{r^{2}}\right) \int \cos \theta \quad V_{\gamma}=\left(7-k^{2}\left(\frac{-1}{r^{2}}\right)\right) \sin \theta\right.
$$

$$
u_{a}=\left(1-\frac{k^{2}}{r^{2}}\right) \cos \theta \quad V_{r}=\left(1+\frac{k^{2}}{r^{2}}\right) \operatorname{si} \theta \theta
$$

$$
U_{\theta}=\left(r+\frac{k^{2}}{r}\right)(-\sin \theta) \quad V_{\theta}=\left(r-\frac{k^{2}}{r}\right) \cos \theta
$$

$\gamma u_{r}=\left(\gamma-\frac{k^{2}}{\gamma}\right) \cos \theta \quad \gamma v_{r}=\left(\gamma+\frac{k^{2}}{\gamma}\right) \sin \theta$
$C-R$ cns $r u_{r}=V_{\theta}$ and $r v_{r}=-U_{\theta}$ are satinfied Thus $f(2)$ if analytic
we have $f^{\prime}(2)=e^{-i \theta}\left(u_{r}+i v_{\gamma}\right)$

$$
\begin{aligned}
& =e^{-i \theta}\left[\left(1-\frac{k^{2}}{r^{2}}\right) \cos \theta+i\left(1+\frac{k^{2}}{r^{2}}\right) \sin \theta\right] \\
& =e^{-i \theta}\left[\cos \theta-\frac{k^{2}}{r^{2}} \cos \theta+i \sin \theta+\frac{i k^{2}}{r^{2}} \sin \theta\right] \\
& =e^{-i \theta}\left[(\cos \theta+i \sin \theta)-\frac{k^{2}}{r^{2}}(\cos \theta-i \sin \theta)\right. \\
& =e^{-i \theta}\left[e^{i \theta}-\frac{k^{2}}{r^{2}} e^{-i \theta}\right] \\
& =e^{-i \theta} \cdot e^{i \theta}-\frac{k^{2}}{r^{2}} e^{-i \theta} \cdot e^{-i \theta} \\
& =e^{-i \phi+i \phi}-\frac{k^{2}}{r^{2}}\left(e^{-2 \theta}\right) \\
& =e^{0}-\frac{k^{2}}{r^{2}} e^{-2 i \theta} \\
& =1-\frac{k^{2}}{r^{2} e^{2 i \theta}} \\
& =1-\frac{k^{2}}{r^{2}\left(e^{i \theta}\right)^{2}} \\
& f^{\prime}(2)=1-\frac{k^{2}}{z^{2}} \\
& =1-\frac{k^{2}}{\left(r e^{i \theta}\right)^{2}}
\end{aligned}
$$

TYPE - (2)
Construction of analytic function $f(2)$ given its real ar imaginary part working o procedure
(1) Given u or v as a function of x, y we find u_{x}, u_{y} or v_{x}, v_{y} and Consider $f^{\prime}(z)=u_{x}+i v_{x}$
(2) Given U, we che $C-R$ equation $V_{x}=-4 y$ or given v we use $U_{x}=v_{y}$ so that $f^{\prime}(z)=U_{x}-i U_{y}(o x) \quad f^{\prime}(z)=v_{y}+i v_{x}$
(3) we substitute the expression for the partial derivatives in the RHS and then put $x=z, y=0$ to obtain $f^{\prime}(z)$ as a function of z.
(a) Integrating war. to z we get $f(z)$
(5) III in the cape of polar co-ordinaty r, θ we confider

$$
f^{\prime}(z)=e^{-i \theta}\left(u_{r}+i V_{r}\right) \text { \& cue } c-R \text { equation }
$$ in the RHS, $V_{o r}=\frac{-1}{r} U_{\theta}$ given U or $U_{r}=1 / q V_{\theta}$ given V.

(6) we use the substitution $\gamma=z, \theta=0$ to obtain $f^{\prime}(z)$ as a function ρz
(7) Integrate w.r. to z we get $f(z)$.

Thin method is known as milne's thomyon method
(1) Construct the analytic function chose real part is $u=\log \sqrt{x^{2}+y^{2}}$

Sol 10

$$
\begin{aligned}
& u=\log \sqrt{x^{2}+y^{2}}=u \\
& D \cdot w \cdot r \cdot \text { to } x \\
& u_{x}=\frac{1}{\not 又} \times \frac{1}{x^{2}+y^{2}} \times \not 2 x \\
& u_{x}=\frac{x}{x^{2}+y^{2}} \\
& u=\frac{1}{2} \log \left(x^{2}+y^{2}\right) \\
& D \cdot u \cdot r \cdot \text { to } y \\
& u_{y}=\frac{1}{\not 又} \times \frac{1}{x^{2}+y^{2}} \times \not 2 y \\
& u_{y}=\frac{y}{x^{2}+y^{2}}
\end{aligned}
$$

Consider

$$
\begin{aligned}
f^{\prime}(z) & =u_{x}+i V_{x} \quad \text { But } \quad V_{x}=-u_{y} \\
& =u_{x}-i u_{y} \quad\left(c-R e q^{n}\right) \\
f^{\prime}(z) & =\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}} \quad \text { (1) }
\end{aligned}
$$

put $x=z$ \& $y=0$ we have

$$
\begin{aligned}
f^{\prime}(z) & =\frac{z}{z^{2}+0}-i(0) \\
& =\frac{z}{z^{2}} \\
f^{\prime}(z) & =1 / z
\end{aligned}
$$

Integrate w.r to z

$$
\begin{aligned}
& f(z)=\int \frac{1}{2} d z+C \\
& f(z)=\log z+C
\end{aligned}
$$

(2) Find the analytic function $f(z)$ whose imaginary part is $e^{x}\left(x \sin y_{y} y \cos y\right)$
Sorn: $\quad V=e^{x}(x \sin y+y \cos y)$

$$
\begin{aligned}
& V_{x}=e^{x}(\sin y+0)+(x \sin y+y \cos y) e^{x} \\
& V_{x}=e^{x}(\sin y+x \sin y+y \cos y) \\
& V_{y}=e^{x}(x \cos y+y(-\sin y)+\cos y) \\
& \quad+(x \sin y+y \cos y)(0)
\end{aligned}
$$

$$
V_{y}=e^{x}(x \cos y-y \sin y+\cos y)
$$

Consider $f^{\prime}(z)=u_{x}+i v_{x}$ But $u_{x}=v_{y(c-1)}\left(q^{n}\right)$

$$
f^{\prime}(z)=v_{y}+i v_{x}
$$

$$
f^{\prime}(z)=e^{x}(x \cos y-y \sin y+\omega \cos y)+i\left(e^{x}(\sin y t x \sin y+y \cos y)\right)
$$

put $x=2, y=0$ we have

$$
\begin{aligned}
& f^{\prime}(z)=e^{z}(z \cos (0)-0+\cos (0))+i\left(e^{2}(0+0+0)\right. \\
&=e^{z}(z(1)+1)+i(0) \quad\left\{\begin{array}{l}
\sin 0=0 \\
\operatorname{cof} 0=1
\end{array}\right. \\
& f^{\prime}(z)=e^{z}(z+1) \\
& \text { Integrate } w \cdot r \cdot+0 z \\
& f(z)=\int e^{z}(z+1) d z+c \\
&=\int(z+1) e^{2} d z+c
\end{aligned}
$$

(3) Determine the analytic function

$$
\begin{aligned}
& f(z)=u+i v \text { given that the real pout } \\
& u=e^{2 x}(x \cos 2 y-y \sin 2 y)
\end{aligned}
$$

So r:

$$
\begin{aligned}
& u=e^{2 x}(x \cos 2 y-y \sin 2 y) \\
& u_{x}=e^{2 x}(\cos 2 y-0)+(x \cos 2 y-y \sin -2 y)\left(2 e^{2 x}\right) \quad f(z)=z e^{2 z}+c \\
& u_{x}=e^{2 x}(\cos 2 y+2 x \cos 2 y-2 y \sin 2 y) \\
& u_{y}=e^{2 x}(-2 x \sin 2 y-\{2 y \cos 2 y+\sin 2 y\})+(x \cos 2 y-y \sin 2 y)(0) \\
& u_{y}=-e^{2 x}(2 x \sin 2 y+2 y \cos 2 y+\sin 2 y)+0 \\
& u_{y}=-e^{2 x}(2 x \sin 2 y+2 y \cos 2 y+\sin 2 y)
\end{aligned}
$$

$$
\begin{aligned}
& \text { consider } f^{\prime}(z)=u_{x}+i V_{x} \quad\left(v_{x}=-u_{y}\right) \\
& f^{\prime}(z)=U_{x}-i U_{y} \text { by } G R \text { en } \\
& \begin{array}{c}
f^{\prime}(z)=e^{2 x}(\cos 2 y+2 x \cos 2 y-2 y \sin 2 y)-i \quad\left(-e^{2 x}(2 x \sin 2 y+2 y \cos 2 y+\sin 2 y)\right) \\
\text { put } x=2, y=0
\end{array} \\
& \begin{array}{c}
\left.\left.f^{\prime}(z)=e^{2 x}(\cos 2 y+2 x \cos 2 y-2 y \sin 2 y)-i\right)-e^{2 x}(2 x \sin 2 y+2 y \cos 2 y+\sin 2 y)\right) \\
\text { put } x=2, y=0
\end{array} \\
& \begin{array}{c}
\text { put } x=z, y=0 \\
f^{\prime}(z)=e^{2 z}(\cos (0)+2 z \cos (0)-0)+i\left(e^{2 z}(2 z \sin (0)+2 \cos \cot (0)+\sin (0))\right.
\end{array} \\
& =e^{2 z}(1+2 z)+i(0) \\
& f^{\prime}(z)=e^{2 z}(1+2 z) \\
& \text { Integrate } \omega \cdot r \text {. to } z \\
& \begin{aligned}
f(z) & =\int(1+2 z) e^{2 z} d z+C \\
& =(1+2 z) e^{2 z}-\left(e^{2 z} \cdot d\right.
\end{aligned} \\
& \begin{array}{l}
=\int(1+2 z) e^{2 z} d z+C \\
=(1+2 z) \frac{e^{2 z}}{2}-\int \frac{e^{2 z}}{2} \cdot \frac{d}{d z}(1+2 z) d z+C
\end{array} \\
& =(1+2 z) \frac{e^{2 z}}{2}-\frac{1}{2}\left[\frac{e^{2 z}}{2} x \not 2\right]+C
\end{aligned}
$$

$$
\begin{aligned}
& f(z)=\frac{e^{3 z}}{2}+2 z \frac{e^{2 z}}{2}-\frac{1}{2} e^{2 z}+c \\
& f(z)=\frac{e^{2 z}}{2}+z e^{2 z}-\frac{e^{2 z}}{2}+c \\
& f(z)=z e^{2 z}+c
\end{aligned}
$$

Thus $f(z)=z e^{2 z}+C$
Also

$$
\text { iso } \begin{aligned}
f(2) & =u+i v \\
& =(x) \\
& =(x+i y) e^{2(x+i y)} \\
& =(x+i y) e^{2 x+i 2 y} \\
& =(x+i y) e^{2 x} \cdot e^{i 2 y} \\
& =e^{2 x}(x+i y)(\cos 2 y+i \sin 2 y) \\
& =e^{2 x}\left(x \cos 2 y+i y \cos 2 y+i x \sin 2 y+i^{2} y \sin 2 y\right) \\
& =e^{2 x}(x \cos 2 y+i(y \cos 2 y+x \sin n 2 y)-y \sin 2 y) \\
& =e^{2 x}(x \cos 2 y-y \sin 2 y+i(y \cos 2 y+x \sin 2 y)) \\
f(z) & =e^{2 x}(x \cos 2 y-y \sin 2 y)+i e^{2 x}(y \cos 2 y+x \sin 2 y)
\end{aligned}
$$

(4) Find the analytic function whose real part is $\frac{x^{4}-y^{4}-2 x}{x^{2}+y^{2}}$, hence find V
So in:

$$
u=\frac{x^{4}-y^{4}-2 x}{x^{2}+y^{2}}
$$

$$
\text { D. w. } x \text { to } x
$$

$$
\left.\begin{array}{|}
\frac{d}{d x}\left(\frac{u}{v}\right) \\
=\frac{v u^{\prime}-u v^{\prime}}{v^{2}} \\
\text { where } u^{\prime}=\frac{d u}{d x} \\
v^{\prime}=\frac{d v}{d x}
\end{array} \right\rvert\,
$$

$$
\begin{aligned}
& u_{x}=\frac{\left(x^{2}+y^{2}\right)\left(4 x^{3}-0-2\right)-}{\left(x^{4}-y^{4}-2 x\right)(2 x)} \\
& \left(x^{2}+y^{2}\right)^{2}
\end{aligned} \text { where } u^{\prime}=\frac{d y}{v^{2}} / d x ~ v^{\prime}=\frac{d v}{d x} .
$$

D. U. war to y

$$
u_{y}=\frac{\left(x^{2}+4^{2}\right)\left(-4 y^{3} J-\left(x^{4}-y^{4}-2 x\right)(2 y)\right.}{\left(x^{2}+y^{2}\right)^{2}}
$$

Consider $f^{\prime}(z)=U_{x}+i V / x$
but $v_{x}=-u_{y}\left(C R e^{n}\right)$

$$
\begin{aligned}
& f^{\prime}(z)=u_{x}-i u_{y} \\
& f^{\prime}(2)=\left\{\frac{\left.\left(x^{2}+y^{2}\right)\left(4 x^{3}-2\right)-\left(x^{4}-y^{4}-2 x\right) 2\right\}}{\left(x^{2}+y^{2}\right)^{2}}\right. \\
& \quad-i\left\{\frac{\left.\left(x^{2}+y^{2}\right)\left(-4 y^{3}\right)-\left(x^{4}-y^{4}-2 x\right)(24)\right\}}{\left(x^{2}+y^{2}\right)^{2}}\right\}
\end{aligned}
$$

put $x=2, y=0$

$$
\begin{aligned}
f^{\prime}(z) & =\left\{\frac{\left(z^{2}+0\right)\left(4 z^{3}-2\right)-\left(z^{4}-0-2 z\right) 2 z}{\left(z^{2}\right)^{2}}\right\} \\
& -i\left\{\frac{\left(z^{2}+0\right)(0)-\left(z^{4}-0-2 z\right)(0)}{\left(z^{2}\right)^{2}}\right\} \\
f^{\prime}(z) & =\left\{\frac{z^{2}\left(4 z^{3}-2\right)-\left(2 z^{5}-4 z^{2}\right)}{z^{4}}\right\} \\
& -i\left\{\frac{0-0\}}{z^{4}}\right\} \\
f^{\prime}(z) & =\frac{4 z^{5}-2 z^{2}-2 z^{5}+4 z^{2}-i(0)}{z^{4}} \\
& =\frac{2 z^{5}+2 z^{2}}{z^{4}} \\
& =\frac{2 z^{5}}{z^{4}}+\frac{2 z^{2}}{z^{4}}
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(z) & =2 z+\frac{2}{z^{2}}=2\left(z+\frac{1}{z^{2}}\right) \\
f(z) & =2 \int\left(z+\frac{1}{z^{2}}\right) d z+C \\
& =2\left[\frac{z^{2}}{2}-\frac{1}{z}\right]+C \\
f(z) & =z^{2}-\frac{2}{z}+C
\end{aligned}
$$

Now we ${ }_{\wedge}^{\text {jus }}$ To find V

$$
\left.\begin{array}{l}
f(2)=u+i v=(x+i 4)^{2}-\frac{2}{x+i y} \\
=\left(x^{2}+i^{2} y^{2}+2 x i 4\right)-\frac{2(x-i y)}{(x+i y)(x-i y)} \\
=\left(x^{2}-y^{2}+i 2 x y\right)-\frac{2(x-i y)}{x^{2}+y^{2}} \\
=\left(x^{2}-y^{2}\right)+2 x i y-\frac{2(x-i y)}{x^{2}+y^{2}} \quad\{(x+i y)(x-i y) \\
\left.=\left(x^{2}-y^{2}\right)+2 x i y-\frac{2 x+2 i y}{x^{2}+y^{2}} \quad=x^{2}-i y^{2}\right) \\
=\left(x^{2}-y^{2}\right)+2 x i y-\frac{2 x}{x^{2}+y^{2}}+\frac{x^{2}-\left(-y^{2}\right)^{2}}{x^{2}+y^{2}}=x^{2}+y^{2} \\
=\left(x^{2}-y^{2}-\frac{2 x}{x^{2}+y^{2}}\right)+i\left(2 x y+\frac{2 y}{x^{2}+4^{2}}\right) \\
\left.=\left(x^{4}+x^{2} 4^{2}-y^{2} x^{2}-y^{4}-2 x\right)+i\left(\frac{2 x^{3} y+2}{x^{2}+y^{2}}\right) x y^{3}+2 y\right) \\
x^{2}+y^{2}
\end{array}\right)
$$

\therefore Imaginary part

$$
v \text { is } \frac{2 x^{3} y+2 x y^{3}+2 y}{x^{2}+y^{2}}
$$

(5) Construct the analytic function whose real part is $r^{2} \cos 2 \theta$.
800^{n}

$$
\begin{aligned}
u & =r^{2} \cos 2 \theta \\
u_{r} & =2 r \cos 2 \theta, \quad u_{\theta}=-2 r^{2} \sin 2 \theta
\end{aligned}
$$

consider

$$
\begin{aligned}
& f^{\prime}(2)=e^{-i \theta}\left(u_{r}+i v_{r}\right)
\end{aligned}
$$

but $V_{r}=\frac{-1}{r} U_{0}\left(c-R e q^{n}\right)$

$$
\begin{aligned}
& \text { \#ं) } 9 \operatorname{Arcos} 2 \theta(t i) \\
& f^{\prime}(z)=e^{-i \theta}\left(u_{r}+i\left(\frac{-1}{r}\right) u_{\theta}\right)
\end{aligned}
$$

- y)

$$
\begin{aligned}
&= e^{-i \theta}\left(2 r \cos 2 \theta+i x \frac{-1}{x} x-2 x^{2} \sin 2 \theta\right) \\
& f^{\prime}(2)=e^{-i \theta}(2 r \cos 2 \theta+i 2 r \sin 2 \theta) \\
& f^{\prime}(2)=2 r e^{-i \theta}(\cos 2 \theta+i \sin 2 \theta) \\
& \quad \text { put } r=2 \& \theta=0 \text { we have }
\end{aligned}
$$ $\left.x y^{3}+2 y\right)$

$$
\begin{aligned}
f^{\prime}(z) & =2 z e^{-i}(\theta)(\cos (0)+i \sin (0)) \\
& =2 z e^{0}(1+0) \\
f^{\prime}(z) & =2 z(1)(1)
\end{aligned}
$$

$$
f^{\prime}(z)=2 z
$$

Integrate w.r to z

$$
\begin{aligned}
f(z) & =2 \int z \cdot d z+C \\
& =2 \cdot \frac{z^{2}}{2}+C \\
f(z) & =z^{2}+C
\end{aligned}
$$

(6) Find the analytic function $f(z)$ whose real part is $\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$

AM: $f(z)=\cot z+C$
(7) S.T the following function u is harmonic. Also determine the comespanding analytic function $f(z)$

$$
u=\sin x \cosh y+2 \cos x \sinh y+x^{2}-y^{2}+4 x y
$$

Son: $\quad U=\sin x \cosh y+2 \cos x \sinh y+x^{2}-y^{2}+4 x y$

$$
\begin{align*}
& u_{x}=\cos x \cosh y-2 \sin x \sinh y+2 x+4 y \\
& u_{x x}=-\sin x \cosh y-2 \cos x \sinh y+2 \tag{1}\\
& u_{y}=+\sin x \sinh y+2 \cos x \cosh y-2 y+4 x \\
& u_{y y}=\sin x \cosh y+2 \cos x \sinh y-2 \tag{2}
\end{align*}
$$

(a)

$$
\text { +(2) } \begin{aligned}
\Rightarrow u_{x x}+u_{y y} & =-\sin x \cosh y-2 \cos x \sinh y+z \\
& +\sin x \cos \operatorname{sh} y+2 \cos x \sinh y-\not 2 \\
u_{x x}+u_{y y} & =0
\end{aligned}
$$

Thus a is harmonic
consider $f^{\prime}(z)=u x+i v_{x} \quad$ But $v_{x}=-u_{y}$

$$
\begin{gathered}
f^{\prime}(z)=u x-i u y \\
f^{\prime}(z)=[\cos x \cosh y-2 \sin x \sinh y+2 x+4 y \\
-i[\sin x \sinh y+2 \cos x \cosh y-2 y \\
+u x] \\
\text { put } x=z \quad y=0 \\
=[\cos z \cos (0)-2 \sin 2 \sin (0)+2 z+4(0) \\
-i[\sin z \sin (0)+2 \cos (z) \cos (0)-210) \\
f^{\prime}(z)=\cos z+2 z-i(2 \cos z+4 z)
\end{gathered}
$$

Integrate $w \cdot r$. to z
y

$$
f(z)=\int\{(\cos z+2 z)-i(2 \cos z+4 z)\} d z
$$

$$
\begin{aligned}
f(z) & =\sin z+\frac{2 z^{2}}{2}-i\left(2 \sin z+4 \frac{4}{2}\right)+C \\
& =\sin z+z^{2}-i\left(2 \sin z+2 z^{2}\right)+C \\
f(z) & =\sin z+z^{2}-i 2 \sin z-i 2 z^{2}+C \\
f(z) & =\sin z(1-2 i)+z^{2}(1-2 i)+C \\
f(z) & =(1-2 i)\left(z^{2}+\sin z\right)+C
\end{aligned}
$$

(0)
(f) Determine the analytic function $f(2)$ whose imaginary part is $\left(r-\frac{k^{2}}{r}\right) \sin \theta, r \neq 0$, hence find the realpart of $f(2)$ \& P.T it is harmonic

Sop

$$
\begin{aligned}
& V=\left(r-\frac{k^{2}}{r}\right) \sin \theta \\
& V_{r}=\left(1+\frac{k^{2}}{r^{2}}\right) \sin \theta \\
& V_{\theta}=\left(r-\frac{k^{2}}{r}\right) \cos \theta
\end{aligned}
$$

Consider $f^{\prime}(2)=e^{-i \theta}\left(\mathrm{Clor}_{\text {or }}+i \mathrm{~V}_{r}\right)$
but $u_{r}=1 / r v_{\theta} \quad\left(c-R e q^{n}\right)$

$$
\begin{aligned}
& f^{\prime}(z)=e^{-i \theta}\left(\frac{1}{r} v_{\theta}+i v_{r}\right) \\
= & e^{-i \theta}\left(\frac{1}{r}\left(r-\frac{k^{2}}{r}\right) \cos \theta+i\left(1+\frac{k^{2}}{r^{2}}\right) \sin \theta\right) \\
= & e^{-i \theta}\left(\left(1-\frac{k^{2}}{r^{2}}\right) \cos \theta+i\left(1+\frac{k^{2}}{r^{2}}\right) \sin \theta\right)
\end{aligned}
$$

put $\gamma=z \& \quad \theta=0$

$$
\begin{aligned}
& =e^{0}\left\{\left(1-\frac{k^{2}}{z^{2}}\right) \cos 0+i\left(1+\frac{k^{2}}{z^{2}}\right) \sin (0)\right\} \\
& =(1)\left(1-k_{0}^{2}\right)(1) \\
f^{\prime}(z) & =1-\frac{k^{2}}{z^{2}}
\end{aligned}
$$

Int. war. to z

$$
\begin{aligned}
& f(z)=\int\left(1-\frac{k^{2}}{z^{2}}\right) d z+c \\
& f(z)=z-k^{2}(-1 / z)+c \\
& f(z)=z+\frac{k^{2}}{z}+c
\end{aligned}
$$

Now let us find real part u tace $z=r e^{i \theta}$

$$
\begin{aligned}
f(2)=u+i r & =r e^{i \theta}+\frac{k^{2}}{r e^{i \theta}} \\
& =r(\cos \theta+i \sin \theta)+\frac{k^{2}}{r} e^{-i \theta} \\
& =r(\cos \theta+i \sin \theta)+\frac{k^{2}}{r}(\cos \theta-i \sin \theta) \\
& =r \cos \theta+i r \sin \theta+\frac{k^{2}}{r} \cos \theta-\frac{i k^{2}}{r} \sin \theta \\
u & =\cos \theta\left(r+\frac{k^{2}}{r}\right)+i \sin \theta\left(r-\frac{k^{2}}{r}\right)
\end{aligned}
$$

Now woe have to is. T is harmonic

$$
\begin{align*}
& \quad U_{\text {orr }}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0 \tag{1}\\
& u=\cos \theta\left(r+\frac{k^{2}}{r}\right) \\
& u_{r}=\cos \theta\left(1-\frac{k^{2}}{r^{2}}\right) \\
& u_{r r}=\cos \theta\left(+\frac{2 k^{2}}{r^{3}}\right) \\
& u_{\theta}=-\sin \theta\left(r+k^{2} / r\right) \\
& u_{\theta \theta}=-\cos \theta\left(r+k^{2} / \alpha\right)
\end{align*}
$$

Now consider LHS O (1

$$
\begin{aligned}
& u_{\text {orr }}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta} \\
= & \cos \theta\left(\frac{2 k^{2}}{r^{3}}\right)+\frac{1}{r}\left(\cos \theta\left(1-\frac{k^{2}}{r^{2}}\right)\right)+\frac{1}{r^{2}}\left[-\cos \theta\left(r+k^{2} / r\right)\right) \\
= & 2 \frac{\cos \theta \cdot k^{2}}{r^{3}}+\cos \theta\left(\frac{1}{r}-\frac{k^{2}}{r^{3}}\right)-\cos \theta\left(\frac{1}{r}+\frac{\left.k^{2} / r^{3}\right)}{r^{2}}\right. \\
= & \frac{2 \cos \theta \cdot k^{2}}{r^{3}}+\frac{1 \cos \theta}{r}+\frac{\cos \theta \cdot \frac{k^{2}}{r^{3}}}{}-\frac{1}{r} \cos \theta-\cos \theta \cdot \frac{k^{2}}{r^{3}} \\
= & \frac{\cos \theta \cdot k^{2}}{r^{3}}+\frac{x^{2} \cos \theta}{r^{3}}
\end{aligned}
$$

$$
=0
$$

TYPE-3 Finding the Conjugate harmonic function \& analytic function
we have proved that the real and imaginary parts of an analytic function $f(z)=u+i l$ are harmonic. u and v are called conjugate harmonic functions Given u we can find v a vice versa

Working procedure
(1) Given u we can find $\frac{\partial u}{\partial x}$ \& $\frac{\partial u}{\partial y}$
(2) we consider C-R equations ∂
$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$
(3) Substituting for $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$ we obtain a system of two non homogeneous PDE
of the form $\frac{\partial v}{\partial y}=f(x, y)$ \&

$$
\frac{\partial v}{\partial x}=g(x, y)
$$

(1) There can be solved by dived integration to obtain

$\cos \theta \cdot \frac{k^{2}}{r^{3}}$ required V.
(3) The same proudure if adopted to find a given V.
(6) Further utiv will give us $f(z)$ as a function of x, y. putting $x=z, y=0$ we obtain $f(z)$ as a function of z
(1) Q.T \quad U $=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$ is harmonic and find its harmonic Conjugate. Also find the correpanding analytic function $f(z)$.
$801^{n 0}$

$$
U=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1
$$

$$
\begin{aligned}
& u=3 x-3 y^{2}+6 y c \\
& u_{x}=3 x=6 x+6
\end{aligned}
$$

$$
u_{y}=-6 x y-6 y
$$

$$
4 y y=-6 x-6
$$

$$
\begin{aligned}
& u x x+u y y=6 x+6-6 p x-6 \\
& u_{x} x+u_{y y}=0
\end{aligned}
$$

They a is harmonic

Now Confider C-R equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
$$

Substituting for $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$

$$
\begin{array}{l|l}
\frac{\partial V}{\partial y}=3 x^{2}-3 y^{2}+6 x & u_{x}=\frac{\partial u}{\partial x} \\
\text { Integrate cor. to } y & u_{y}=\frac{\partial u}{\partial y} \\
V=\int\left(3 x^{2}-3 y^{2}+6 x\right) d y+f(x) & v_{x}=\frac{\partial r}{\partial x} \\
V y=\frac{\partial v}{\partial y} \\
V=3 x^{2} y-B y^{3}+6 x y+f(x) & \\
\frac{\partial V}{\partial x}=-(-6 x y-6 y) & \\
\frac{\partial V}{\partial x}=6 x y+6 y &
\end{array}
$$

Integrate war. to x

$$
\begin{aligned}
V & =\int(6 x y+64) d x+g(y) \\
& =6 y \cdot \frac{x^{2}}{2}+6 y x+g(y) \\
V & =3 x^{2} y+6 y x+g(4)
\end{aligned}
$$

Now we have to properly choose $f(x)$ and $g(4)$ to obtain a unique expression for V.

$$
\begin{aligned}
& \therefore f(x)=0, g(4)=-y^{3} \\
& v=3 x^{2} y-y^{3}+6 x y+0 \\
& v=3 x^{2} y-y^{3}+6 x y
\end{aligned}
$$

The analytic function is $f(x)$ univ

$$
\begin{aligned}
f(2) & =\left(x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1\right)+ \\
& i\left(3 x^{2} y-y^{3}+6 x y\right)
\end{aligned}
$$

put $x=2, y=0$

$$
\begin{aligned}
& f(z)=\left(z^{3}-0+3 z^{2}-0+1\right)+i(0-0+0) \\
& f(z)=z^{3}+3 z^{2}+1
\end{aligned}
$$

(2) S.T $V=\log \sqrt{x+y}$ is harmoniC
$30 n 8$

$$
\begin{aligned}
V & =\log \sqrt{x+y} \\
V & =\log (x+y)^{1 / 2} \\
V & =y_{2} \log (x+y) \\
V x & =\frac{1}{2} \times \frac{1}{x+y}, \quad v y=\frac{1}{2} \times \frac{1}{x+y} \\
V x x & =-\frac{1}{2} \times \frac{1}{(x+4)^{2}} \quad V y y=\frac{-1}{2} \times \frac{1}{(x+y)^{2}} \\
V x x+V_{y y} & =-\frac{1}{2(x+4)^{2}}-\frac{1}{2(x+4)^{2}} \\
& =\frac{-2}{2(x+y)^{2}} \\
& =\frac{-1}{(x+y)^{2}} \neq 0
\end{aligned}
$$

$\therefore V$ is not harmonic
(3) S.T $\quad V=\cos x \sinh y$ is harmonic. Find the conjugate harmonic function and express univ as a analytic function of Z.

Son: $\quad V=\cos x \sinh y$

$$
\begin{aligned}
& v_{x}=-\sin x \sinh y \\
& v_{x}=-\cos x \sinh y \\
& v_{y}=\cos x \cosh y \\
& v_{y y}=\cos x \cosh y
\end{aligned}
$$

$$
\begin{aligned}
v_{x} x+v_{y y} & =-\cos x \sinh y+\cos x \sinh y \\
v x x+v_{y y} & =0
\end{aligned}
$$

To find the harmonic Conjugate, we Conjider C-R ens

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \& \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
$$

Substituting for $\frac{\partial v}{v y}$ and $\frac{\partial v}{\partial x}, v_{x}$

$$
\frac{\partial u}{\partial x}=\cos x \cosh y \left\lvert\, \frac{\partial u}{\partial y}=-(-\sin x \sinh y)\right.
$$

Integrate woos. to x

$$
\begin{aligned}
& u=\int \cos x \cosh y \cdot d x+f(4) \\
& u=\cosh y \sin x+f(y)
\end{aligned}
$$

$$
\begin{aligned}
& \partial u / \partial y=\sin x \sinh y \\
& u=\int(\sin x \sinh y) d y+g(x) \\
& u=\sin x \cosh y+g(x)
\end{aligned}
$$

To get a unique expression for u
chooge $f(x)=0 \quad \& \quad g(x)=0$

$$
u=\cosh y \sin x
$$

$$
\begin{aligned}
f(2) & =u+i v \\
& =\sin x \cosh y+i \cos x \sinh y
\end{aligned}
$$

put $x=2, y=0$ we get

$$
\begin{aligned}
& f(z)=\sin z \cos (0)+i \cos (0) \sin (0) \\
& f(z)=\sin z(1) \\
& f(z)=\sin z
\end{aligned}
$$

(4) Given that $u=x^{2}+4 x-y^{2}+2 y$ as the real part of an analytic function Find V and hence find $f(z)$ in terry of z. we have to find harmonic 2. connate

They ane not asking to S.T u is
ham
SOn:

$$
\begin{aligned}
& u=x^{2}+4 x-y^{2}+2 y \\
& u_{x} \text { or } \frac{\partial u}{\partial x}=2 x+4 \\
& u_{y} \text { or } \frac{\partial u}{\partial y}=-2 y+2
\end{aligned}
$$

Confider $C-R$ equation \&

$$
\begin{array}{c|c}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial y}=2 x+4 & \frac{\partial v}{\partial x}=-(-2 y+2) \\
V=\int(2 x+u) d y+f(x) & \frac{\partial v}{\partial x}=2 y-2 \\
V=2 x y+4 y+f(x) & V=\int(2 y-2) d x ;-g(4) \\
V=2 y x-2 x+g(y)
\end{array}
$$

To get unique expreltion for v oChone $f(x)=-2 x, g(4)=4 y$

$$
\begin{aligned}
& \therefore v=2 x y+4 y-2 x \\
& f(z)=u+i v \\
& =\left(x^{2}+4 x-y^{2}+24\right)+i(2 x y+4 y-2 x) \\
& \text { put } x=z, 4=0 \\
& =\left(z^{2}+4 z-0+0\right)+i(0+0-2 z) \\
& f(z)=\left(z^{2}+4 z\right)-2 i z
\end{aligned}
$$

(5) S.T $u=\left(r+\frac{1}{r}\right) \cos \theta$ is harmonic. Find its harmonic conjugate and alpo the comreanding analytic function

Sol: $U=\left(\gamma+\frac{1}{\gamma}\right) \cos \theta$
we shall S.T $u_{a r}+\frac{1}{d} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0$ - (1)

$$
\begin{array}{r}
U_{r}=\left(1-\frac{1}{r^{2}}\right) \cos \theta ; U_{r r}=\left(0+\frac{2}{r^{3}}\right) \cos \theta \\
U_{r r}=+\frac{2}{r^{3}} \cos \theta \\
U_{\theta}=\left(\gamma+\frac{1}{r}\right)(-\sin \theta) ; U_{\theta} \theta=\left(r+\frac{1}{r}\right)(-\cos \theta)
\end{array}
$$

(4) onsider the LHS of (1)

$$
\begin{aligned}
& U r r+\frac{1}{r} U r+\frac{1}{r^{2}} U \theta \theta \\
= & +\frac{2}{r^{3}} \cos \theta+\frac{1}{r}\left(1-\frac{1}{r^{2}}\right) \cos \theta-\frac{1}{r^{2}}(\cos \theta(r+1 / r 1) \\
= & +\frac{2}{r^{3}} \cos \theta+\left(\frac{1}{r}-\frac{1}{r^{3}}\right) \cos \theta-\cos \theta\left(\frac{1}{r}+\frac{1}{r^{3}}\right)
\end{aligned}
$$

$$
=\frac{72}{r^{3}} \cos \theta+\frac{\cos \theta}{?}-\frac{\frac{\operatorname{cop} \theta}{}}{r^{2}}-\frac{\operatorname{cof} \theta}{x}-\frac{\cos \theta}{x^{2}}
$$

$=0 \quad \therefore$ u is harmonic
to find V, let us contider $O-R$ ens in polar form

$$
r u_{b}=v_{\theta} ; r v_{r}=-u_{0}
$$

$$
\begin{array}{|l|l|}
\hline V_{\theta}=r\left(1-\frac{1}{r^{2}}\right) \cos \theta & V_{\gamma}=-\frac{1}{r} u \theta \\
\hline \frac{\partial r}{r \theta} \left\lvert\, V_{\theta}=\left(r-\frac{1}{r}\right) \cos \theta\right. & =-\frac{1}{r}\{(r+1 / r)(-\sin \theta)\} \\
V=\int\left(r-\frac{1}{r}\right) \cos \theta \cos \theta+f(r) & V_{r}=\left(1+1 / r^{2}\right) \sin \theta \\
V=\left(r-\frac{1}{r}\right)(\sin \theta)+f(r) & V=\int\left(1+1 / r^{2}\right) \sin \theta d r \\
V & +g(\theta)
\end{array}
$$

$$
V=\sin \theta(r-1 / r)+g(\theta)
$$

To get unique expression for V let of choose $f(r)=0$ \& $g(\theta)=0$

$$
V=(r-1 / r) \sin \theta
$$

we have $f(z)=$ univ

$$
f(z)=\left(r+\frac{1}{r}\right) \cos \theta+i(r-1 / r) \sin \theta
$$

put $r=2, \theta=0$

$$
\begin{aligned}
& f(z)=\left(z+\frac{1}{2}\right) \cos (0)+i\left(r-\frac{x}{2}\right) \sin (0) \\
& f(z)=z+\frac{1}{2} \text { in analytic function }
\end{aligned}
$$

H.W(6) S.T $U=e^{x}(x \operatorname{con} y-y \sin y)$ is harmonic and find its harmonic Conjugate. Also find correspanding analytic function.

Sol: $\quad u=e^{x}(x \cos y-y \sin y)$

$$
\begin{aligned}
& u_{x}=e^{x}(\cos y-0)+(x \operatorname{con} y-y \sin y) e^{x} \\
& u_{x}=e^{x}(\cos y+x \operatorname{con} y-4 \sin y) \\
& u_{x} x=e^{x}(0+\operatorname{con} y-0)+(\cos y+x \cos y-4 \sin y) e^{x} \\
& u_{x x}=e^{x}(\cos y+\operatorname{con} y+x \cos y-y \sin y) \\
& u_{x x}=e^{x}(2 \cos y+x \cos y-y \sin y) \\
& u_{y}=e^{x}(-x \sin y-y \operatorname{con} y-\sin y)+(x \operatorname{con} y-y \sin y)(0) \\
& u_{y}=-e^{x}(+x \sin y+y \cos y+\sin y) \\
& u_{y y}=-e^{x}(x \cos y-y \sin y+\cos y+\cos y) \\
& +(x \sin y+y \cos y+\sin y)(0) \\
& u_{y y} y=-e^{x}(x \cos y-y \sin y+2 \cos y) \\
& u_{x} y+u_{y y} y=e^{x}(2 \cos y+x \cos y-y \sin y) \\
& -e^{x}(2 \cos y+x \cos y-y \sin y)
\end{aligned}
$$

$$
\int I I d x+I \int I d x-\iint I \frac{d}{d x}(I) d x
$$

Now Congider O-R equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
$$

$$
\begin{aligned}
& \frac{\partial V}{\partial y}=e^{x}(\cos y+x \cos 4-4 \sin 4) \\
& V=\int e^{x}(\operatorname{con} 4+x \operatorname{con} 4-4 \sin 4)+f(x) \\
& V=e^{x}\left[\sin y+x \cdot \sin y-\left\{\begin{array}{c}
\left.y(-\cos 4)-\int-\cos y\right\} \\
(1) d y
\end{array}\right.\right.
\end{aligned}
$$

$$
f f(x)
$$

Intgration

$$
V=e^{x}[\sin y+x \sin y+y \cos y-\sin y]+f(x)
$$

5siny (0)

$$
\begin{aligned}
& \frac{\partial V}{\partial x}=-\left(-e^{x}(x \sin y+y \cos y+\sin y)\right) \\
& \frac{\partial V}{\partial x}=e^{x}(x \sin y+y \cos y+\sin y) \\
& V= \int e^{x}(x \sin y+y \cos y+\sin y) d x+g(y) \\
&= \sin y \int x e^{x} d x+y \cos y \int e^{x} d x+\sin y(f d x+g(4) \\
&= \sin y\left[x e^{x}-\int e^{x}(1) d x\right]+y \cos y(x)+ \\
&=\sin y\left(e^{x}\right)+g(y) \\
&= \sin y\left(x e^{x}-e^{x}\right)+e^{x y \cos y+x \sin y+g(y)} \\
&= x e^{x} \sin y-e^{x} \sin y+e^{x} y \cos y+e^{x} \sin y+g(y)
\end{aligned}
$$

$$
v=x e^{x} \sin y+e^{x} y \cos y+g(y)
$$

To get unique expression for V shone $f(x)=0, g(y)=0$

$$
\begin{aligned}
V & =x e^{x} \sin y+e^{x} y \cos y \\
V & =e^{x}(x \sin y+y \cos y) \\
f(z) & =u+i v \\
f(2) & =e^{x}(x \cos y-y \sin y)+i e^{x}(x \sin y+y \text { od } y) \\
& \text { put } x=z \quad y=0
\end{aligned}
$$

$$
=e^{2}(2 \cos (0)-0)+i e^{2}(0+0)
$$

$$
=e^{z}(z)+0
$$

$f(z)=2 e^{z}$ is analytic function
TYPE -u:
(1) Find the analytic function $f(z)=u+i v$ given $u-v=e^{x}(\cos y-\sin y)$

Son: $\quad u-v=e^{x}(\cos y-\sin y)$

$$
\begin{align*}
& \text { D. portion r. to } x \\
& u_{x}-v_{x}=e^{x}(0-0)+(\cos y-\sin y) e^{x} \\
& u_{x}-v_{x}=e^{x}(\cos y-\sin y)-(1) \tag{1}\\
& u_{y}-v_{y}=e^{x}(-\sin y-\cos y)+0 \\
& u_{y}-v_{y}=-e^{x}(\sin y+\cos y)-0
\end{align*}
$$

Using $C-R$ equations for the HS op eq
$U_{y}=-V_{x}$ and $V_{y}=U_{x}$ we have

$$
\begin{aligned}
-v_{x}-u_{x} & =-e^{x}(\sin y+\cos y) \\
f\left(v_{x}+u_{x}\right) & =+e^{x}(\sin y+\cos y) \\
v_{x}+u_{x} & =e^{x}(\sin y+\cos y)-\text { (3) }
\end{aligned}
$$

Solve (7) \& (3)

$$
\begin{aligned}
& u_{x}-V_{x}=e^{x}(\cos y-\sin y) \\
& V u_{c}+u_{x}=e^{x}(\sin y+\cos y) \\
& 2 u_{x}=e^{x}(\cos y-\sin y+\sin y+\cos y) \\
& \not u_{x}=\not u^{x} \cos y \\
& u_{x}=e^{x} \cos y
\end{aligned}
$$

(1) - (3)

$$
\begin{aligned}
& u_{x}-v_{x}=e^{x}(\cos y-\sin y) \\
& -\left(v_{x}+u_{x}\right)=-e^{x}(\cos y-\sin y+\cos y) \\
& \Rightarrow t t_{x}-V_{x}=e^{x}(\cos y-\sin y) \\
& -v x-v x=-e^{x}(\sin y+\cos y) \\
& -2 v_{x}=e^{x}(\cos y-\sin y-\sin y-\cos y) \\
& -g v x=-\$ e^{x} \sin y \\
& V_{x}=e^{x} \sin y \\
& f^{\prime}(z)=u_{x}+i v_{x} \\
& f^{\prime}(z)=e^{x} \cos y+i e^{x} \sin y \\
& \text { put } x=2, y=0 \\
& =e^{2} \cos (0)+i e^{2} \sin (0) \\
& f^{\prime}(2)=e^{z}(1) \Rightarrow f^{\prime}(z)=e^{z} \text { Integrate w.r.toz }
\end{aligned}
$$

(2) If $f(z)=u(r, \theta)+i v(r, \theta)$ is analytic and given that $u+v=\frac{1}{r^{2}}(\cos 2 \theta-\sin 2 \theta)$ $r \neq 0$ determine the analytic function $f(2)$.
Sen. $\quad u+v=\frac{1}{r^{2}}(\cos 2 \theta-\sin 2 \theta)$
D. Partially w.r. to or \& θ we have

$$
\begin{align*}
& u_{r}+v_{r}=\frac{-2}{r^{3}}(\cos 2 \theta-\sin 2 \theta) \tag{7}\\
& u_{\theta}+v_{\theta}=\frac{1}{r^{2}}(-2 \sin 2 \theta-2 \cos 2 \theta) \tag{2}
\end{align*}
$$

Using $C-R$ equations:

$$
V_{\theta}=r U_{r} \text { and }-U_{\theta}=\gamma V_{r}
$$

(2) $\left.)-r V_{r}+r u_{r}=-\frac{2}{r^{2}}(\sin 2 \theta+\cos 2 \theta)-3\right)$

Selve (1) and (3)

$$
\begin{align*}
u_{r}+v_{r}= & -\frac{2}{r^{3}}(\cos 2 \theta-\sin 2 \theta) \\
r\left(-v_{r}+u_{r}\right) & =-\frac{2}{r^{2}}(\sin 2 \theta+\cos 2 \theta) \\
\Rightarrow u_{r}+v_{r} & =-\frac{2}{r^{3}}(\cos 2 \theta-\sin 2 \theta) \\
-u_{r}+u_{r} & =-\frac{2}{r^{3}}(\sin 2 \theta+\cos 2 \theta) \\
p u_{r} & =-\frac{2}{r^{3}}(\cos 2 \theta-\sin 2 \theta+\sin 2 \theta+\operatorname{coth} \theta) \\
u_{r} & =\frac{-1}{r^{3}} \times 2 \cos 2 \theta \tag{1}
\end{align*}
$$

$$
\begin{aligned}
u_{r}+v_{r} & =-\frac{2}{r^{3}}(\cos 2 \theta-\sin 2 \theta) \\
r\left(v_{r}-u_{r}\right) & =\frac{2}{r^{2}}(\sin 2 \theta+\cos 2 \theta) \\
\Rightarrow v_{r}+v_{r} & =-\frac{2}{r^{3}}(\cos 2 \theta-\sin 2 \theta) \\
v_{r}-v_{r} & =\frac{2}{r^{3}}(\sin 2 \theta+\cos 2 \theta) \\
Q v_{r} & =\frac{2}{r^{3}}(-\cos 2 \theta+\sin 2 \theta+\sin 2 \theta+\cos 2 \theta \\
v_{r} & =\frac{i}{r^{3}} \times 2 \sin 2 \theta
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(z) & =e^{-i \theta}\left(u_{r}+i v_{r}\right) \\
& =e^{-i \theta}\left(\frac{-1}{r^{3}} \times 2 \cos 2 \theta+i \frac{1}{r^{3}} \times 2 \sin 2 \theta\right) \\
& =-\frac{2 e^{-i \theta}}{\gamma^{3}}(\cos 2 \theta-i \sin 2 \theta) \\
& =\frac{-2 e^{-i \theta}}{r^{3}}\left(e^{-i 2 \theta}\right) \\
& =-\frac{2}{r^{3}} e^{-i 3 \theta} \\
& =\frac{-2}{r^{3} e^{i 3 \theta}}=-\frac{2}{\gamma^{3}\left(e^{i \theta}\right)^{3}}=-\frac{2}{\left(r e^{i \theta}\right)^{3}} \\
f^{\prime}(z) & =\frac{-2}{z^{3}} \\
f(z) & =-2 \int \frac{1}{z^{3}} d z+C \\
f(z) & =-22\left(-1 / z^{2}\right)+C \\
f(z) & =\frac{1}{z^{2}}+C
\end{aligned}
$$

(3) If $f(z)$ is analytic S.T,

$$
\begin{aligned}
& \text { If } f(z) \text { is analytic \&.T, } \\
& {\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right]|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}}
\end{aligned}
$$

$S_{0100}^{n 0}$ Let $f(z)=$ utiv be analytic

$$
\therefore|f(2)|=\sqrt{u^{2}+v^{2}}
$$

(82) $|f(2)|^{2}=u^{2}+v^{2}=\phi($ say $)$

To prove that $\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right] \phi=4\left|f^{\prime}(2)\right|^{2}$
i.e to prove that $\phi_{x x}+\phi_{y y}=4\left|f^{\prime}(2)\right|^{2}$ consider

$$
\begin{align*}
& \text { consider } \\
& \phi=u^{2}+v^{2} \text { and } D \cdot w \cdot r \cdot \text { to } x \text { partially } \\
& \phi_{x}=2 u u_{x}+2 v v_{x} \\
& \phi_{x}=2\left[u_{x}+v v_{x}\right] \\
& 0 \cdot w \cdot r \cdot t_{0} x \text { gain } \\
& \phi_{x x}=2\left[u_{x x}+u_{x} u_{x}+v v_{x x}+v_{x} v_{x}\right] \tag{1}\\
& \phi_{x x}=2\left[u u_{x x}+u_{x}^{2}+v v_{x x}+v_{x}^{2}\right] \text {-(1) }
\end{align*}
$$

vil we can get

$$
\begin{equation*}
\phi_{44}=2\left[u u_{y y}+u_{y}^{2}+v v_{y y}+v_{y}^{2}\right] \tag{2}
\end{equation*}
$$

adding (9) \& (2)

$$
\begin{array}{r}
\phi x x+\phi_{y y}=2\left[u_{x x}+u_{x}^{2}+v v_{x x}+v^{2} x\right. \\
\left.+u_{y y}+u^{2} y+v_{y y}+v_{y}^{2}\right] \\
=2\left[u\left(u_{x x}+u_{y y}\right)+v\left(v_{x} x+v_{y y}\right)+\right. \\
\left.u^{2} x+v^{2} x+u^{2} y+v_{y}^{2}\right]- \text { (3) }
\end{array}
$$

since $f(2)=u t i v$ is analytic, u and V are harmonic

$$
\begin{aligned}
& u_{x x}+u_{y y}=0, v_{x x}+v_{y y}=0 \\
&= 2\left[u 0+v 0+u_{x}^{2}+v_{x}^{2}+\left(-v_{x}\right)^{2}+\left[u_{x}\right)^{2}\right] \\
& \text { co eq eq }
\end{aligned}
$$

$$
\begin{align*}
& =2\left[u_{x}^{2}+v^{2} x+v_{x}^{2}+u_{x}^{2}\right] \\
& =2\left[2 u_{x}^{2}+2 v_{x}^{2}\right] \tag{4}\\
& y=H\left[u_{x}^{2}+v_{x}^{2}\right]-\text { (4) } \\
& f^{\prime}(2)=u_{x}+i v_{x} \\
& \left|f^{\prime}(2)\right|=\sqrt{u^{2} x+v^{2} x}
\end{align*}
$$

$$
d_{x x}+d_{y y}=H\left[u_{x}^{2}+V_{x}^{2}\right]
$$

(6)

$$
\left|f^{\prime}(2)\right|^{2}=u^{2} x+v^{2} x
$$

in the
using the er RHS of (4) we have

$$
\begin{aligned}
& \phi_{x}+\phi_{y_{4}}=4\left|f^{\prime}(2)\right|^{2} \\
& \quad \phi x x+\phi_{y y}=4\left|f^{\prime}(2)\right|^{2}
\end{aligned}
$$

(4) If $f(z)$ is a regular function of z

$$
S \cdot T\left\{\frac{\partial}{\partial x}|f(z)|\right\}^{2}+\left\{\frac{\partial}{\partial y}|f(z)|\right\}^{2}=\left|f^{\prime}(z)\right|^{2}
$$

Sol. Let $f(z)=u t i v$ be the regular canalutic function

$$
\begin{aligned}
& |f(2)|=\sqrt{u^{2}+v^{2}}=\phi(\text { say }) \\
& |f(2)|^{2}=u^{2}+v^{2}
\end{aligned}
$$

we have to P.T $\left(\frac{\partial d}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial y}\right)^{2}=\left|f^{\prime}(2)\right|^{2}$

$$
\phi_{x}^{2}+\phi^{2} y=\left|f^{\prime}(2)\right|^{2}
$$

where $\quad \phi=\sqrt{u^{2}+v^{2}}$

Consider $\phi^{\prime}=u^{2}+v^{2}$
D. w.r. to x partiolly

$$
\begin{align*}
2 \phi \phi x & =2 u u_{x}+\partial v v_{x} \\
\phi \phi \phi x & =\$\left(u_{x}+v v x\right) \\
\phi \phi x & =u u_{x}+v v x \tag{1}
\end{align*}
$$

$111^{\text {ly }}$ we get

$$
\begin{equation*}
\phi \phi y=U U_{y}+V v_{y} \tag{2}
\end{equation*}
$$

Squaring \& adding (1) \& (2) we have

$$
\begin{aligned}
\left(\phi \phi_{x}\right)^{2}+\left(\phi \phi \phi_{x}\right)^{2}= & \left(u u_{x}+v v_{x}\right)^{2}+\left(u u_{y}+v v_{y}\right)^{2} \\
\phi^{2} \phi_{x}^{2}+\phi^{2} \phi_{y}^{2}= & \left(u^{2} u^{2} x+v^{2} v^{2} x+2 u u_{x} v v_{x}\right)+ \\
& \left(u^{2} u^{2} y+v^{2} v^{2} y+2 u u_{y} v v_{y}\right) \\
\phi^{2}\left(\phi^{2} x+\phi^{2} y\right)= & \left(u^{2} u^{2} x+v^{2} v^{2} x+2 u v u_{x} v_{x}\right) \\
& +\left(u^{2}\left(v_{x}\right)^{2}+v^{2} u_{x}^{2}+2 u v\left(-v_{x}\right)\left(u_{x}\right)\right)
\end{aligned}
$$

Since $f(2)=u+i v$ is analytic we uyed $C-R \mathrm{eq}^{\text {n/s }}$

$$
u_{y}=-v x \& \quad v_{y}=u_{x}
$$

in the RHS of second bracekt

$$
\begin{aligned}
\phi^{2}\left(\phi^{2} x+\phi^{2} y\right) & =u^{2}\left(u_{x}^{2}+v^{2} x\right)+v^{2}\left(u_{x}^{2}+v_{x}^{2}\right) \\
\phi^{2}\left(\phi_{x}^{2}+\phi_{y}^{2}\right) & =\left(u_{x}^{2}+v^{2} x\right)\left(u^{2}+v^{2}\right)
\end{aligned}
$$

$\phi^{2}=u^{2}+v^{2}$ \& uying thin in the RHS we have

$$
\phi^{2}\left(\phi^{2} x+\phi^{2} y\right)=\phi^{2}\left(u^{2} x+v^{2} x\right)
$$

$$
\begin{equation*}
\phi x^{2}+\phi^{2} y=u^{2} x+v^{2} x \tag{3}
\end{equation*}
$$

But $f^{\prime}(2)=u_{x}+i V_{x}$

$$
\begin{aligned}
& \left|f^{\prime}(2)\right|=\sqrt{u^{2} x+v^{2} x} \\
& \left|f^{\prime}(2)\right|^{2}=u^{2} x+v^{2} x
\end{aligned}
$$

using thin in the RHS of (3) we have

$$
\phi^{2} x+\phi^{2} y=\left|f^{\prime}(2)\right|^{2}
$$

(5) If $\phi(x, y)$ y a differentiable function and $f(z)=u(x, y)+i v(x, y)$ is a regular function, show that

$$
\left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial y}\right)^{2}=\left\{\left(\frac{\partial \phi}{\partial u}\right)^{2}+\left(\frac{\partial \phi}{\partial v}\right)^{2}\right\}\left|f^{\prime}(2)\right|^{2}
$$

Son: ϕ as a Composite function by regarding to be a function of a and v where u and v are functions $x x, y$.

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=\frac{\partial \phi}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial \phi}{\partial v} \cdot \frac{\partial v}{\partial x} ; \frac{\partial \phi}{\partial y}=\frac{\partial \phi}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial \phi v}{\partial v y} \\
& \phi_{x}=\phi_{u} u_{x}+\phi_{v} \cdot v_{x} ; \phi_{y}=\phi_{u} u_{y}+\phi_{v} v_{y} \\
& \text { S on B.S } ; \text { S on BS } \\
& \phi_{x}^{2}=\left(\phi_{u} u_{x}+\phi_{v} v_{x}\right)^{2} ;\left(\phi_{y}\right)^{2}=\left(\phi_{u} u_{y}+\phi_{v} v_{y}\right)^{2} \\
& \phi_{x}^{2}=\phi_{u}^{2} u_{x}^{2}+\phi_{v}^{2} v_{x}^{2}+2 \phi_{u} u_{x} \phi_{v} \phi_{x}
\end{aligned}
$$

use $C-R$ eqn in $\left(\phi_{4}\right)^{2}$ er eq n

$$
\left(\phi_{y}\right)^{2}=\left(-\phi_{u} v_{x}+\phi_{v} u_{x}\right)^{2} \quad \begin{aligned}
& u_{y}=-v_{x} \\
& v_{y}=u_{x}
\end{aligned}
$$

$$
\begin{align*}
\phi_{y}^{2}= & \phi_{u}^{2} v_{x}^{2}+\phi_{v}^{2} u_{x}^{2}-2 \phi_{u} v_{x} \phi_{v} u_{x} \\
\phi_{x}^{2}+\phi_{y}^{2}= & \phi_{u}^{2} u_{x}^{2}+\phi_{v}^{2} v_{x}^{2}+2 \phi_{u} u_{x} \phi_{v} v_{x} \\
& +\phi_{u}^{2} v_{x}^{2}+\phi_{v}^{2} u_{x}^{2}-2 \phi_{u} v_{x} \phi_{v} u_{x} \\
\phi_{x}^{2}+\phi_{y}^{2}= & \phi_{u}^{2}\left(u_{x}^{2}+v_{x}^{2}\right)+\phi_{v}^{2}\left(u_{x}^{2}+v_{x}^{2}\right) \\
\phi_{x}^{2}+\phi_{y}^{2}= & \left(u_{x}^{2}+v_{x}^{2}\right)\left(\phi_{u}^{2}+\phi_{v}^{2}\right)-\text { (1) } \tag{1}
\end{align*}
$$

but $f^{\prime}(z)=u_{x}+i V_{x}$

$$
\left|f^{\prime}(z)\right|^{2}=u^{2} x+v_{x}^{2}
$$

Now (1) becomes

$$
\phi^{2} x+\phi^{2} y=\left(\phi^{2} u+\phi^{2} v\right)\left(\left.f^{\prime}(2)\right|^{2}\right.
$$

\qquad
module-02 \qquad
Conformal transformations and
Complex integration
Bilinear Transformation (BLT)
The transformation $\omega=\frac{a z+b}{c z+d}$ where a, b, c, d are real constant $\mathrm{Cz+d} \geqslant$; ad $-b c \neq 0$ is called a bilinear trans formation.
working procedure:
\Rightarrow (1) Given $\omega_{1}, \omega_{2}, \omega_{3}$ comrespanding to z_{1}, z_{2}, z_{3} we assume the billinear transformation in the form $\omega=\frac{a z+b}{c z+d}$
(2) we substitute the given set of points to obtain a set of three equations in four unknowns a, b, c, d.
(3) We deduce a pair of equation in any three unknowns and solve by the rule of cross x^{n} to obtain a proportionate set of values for three unknowns.
(4) The value are cyed to find the fourth unknown
(5) All there four value when substituted in the assumed form of. ω, will give $c y$ the required bilinear transformation.
problems
(1) Find the bilinear transformation which map the points $z=1, i,-1$ into $\omega=i, 0,-i$.

Sol Let $\omega=\frac{a z+b}{c z+d}$-(1) be required bilinear transformation
when $z=1, \omega=i$
en (1) become\&

$$
\begin{gather*}
i=\frac{a+b}{c+d} \\
a+b=c i+d i \\
a+b-c i-d i=0 \tag{2}
\end{gather*}
$$

when $z=i, \omega=0$ eqn (1) becomes

$$
\begin{aligned}
& 0=\frac{a i+b}{c i+d} \\
& a i+b=0
\end{aligned}
$$

when $z=-1, \quad \omega=-i$
eqn (1) becomes

$$
\begin{aligned}
& -i=\frac{-a+b}{-c+d} \\
& c i-d i=-a+b \\
& -a+b-c i+d i=0 \text {-4) }
\end{aligned}
$$

Solve (2) \& (4)

$$
\begin{gathered}
a+b-c i-d i=0 \\
-a+b-c i+d i=0 \\
2 b-2 c i=0 \\
2(b-i c)=0 \\
b-i c=0-\text { (5) }
\end{gathered}
$$

by cross x^{2} method $a i+b+0(c)=0$
Sotve (3) \& (5) $a(0)+b-i c=0$

$$
\frac{a}{\left|\begin{array}{cc}
1 & 0 \\
1 & -i
\end{array}\right|}=\frac{-b}{\left|\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right|}=\frac{c}{\left|\begin{array}{ll}
i & 1 \\
0 & 1
\end{array}\right|}
$$

$$
\left.\begin{array}{rl}
\frac{a}{-i}=-\frac{b}{1} & =\frac{c}{p}=k(\text { say }) \\
a & =-i k \quad b=k \quad c
\end{array}=i k\right)
$$

put a, b, c in (2)

$$
\begin{gathered}
-i K-K-i^{2} K-d i=0 \\
-i K-\not K+K K-d i=0 \\
-d j=y^{2} K \\
d=-K
\end{gathered}
$$

put a, b, c, d in ω

$$
\begin{aligned}
& \omega=\frac{-i k z-k}{i k z-k}=\frac{-k(+i z+1)}{-k(-i z+1)} \\
& \omega=\frac{1+i z}{1-i z}
\end{aligned}
$$

(2) Find the B.d.T which map the points $z=1, i,-1$ into $\omega=2, i,-2$ also find the invariant points of the transformation.

$$
\omega=\frac{a z+b}{c z+d}-(1)
$$

\qquad
\qquad
when $z=1, \omega=2$
Now (1) becomes

$$
\begin{aligned}
& 2=\frac{a+b}{c+d} \\
& a+b=2 c+2 d \\
& a+b-2 c-2 d=0-2
\end{aligned}
$$

when $z=i, \omega=i$
(1) becomes

$$
\begin{align*}
& u=\frac{a i+b}{c i+d} \\
& c i^{2}+d i=a i+b \\
& -c+d i=a i+b \\
& a i+b+c-d i=0 \tag{3}
\end{align*}
$$

when $z=-1, \omega=-2$
(1) becomes

$$
\begin{gather*}
-2=\frac{-a+b}{-c+d} \\
2 c-2 d=-a+b \\
-a+b-2 c+2 d=0
\end{gather*}
$$

$$
\begin{aligned}
& a+b-2 c-2 d=0 \times i \\
& a i+b+c-d i=0 \\
& a d+b i-2 c i-2 d i=0 \\
& \Leftrightarrow \frac{a i+b+c+1, d i}{a+c}=0 \\
& b(i-1)-c(2 i
\end{aligned}
$$

Solve (2) \& (a)

$$
\begin{gather*}
a+b-2 c-2 d=0 \\
-b+b-2 c+2 d=0 \\
\hline 2 b-4 c=0 \\
2(b-2 c)=0 \tag{5}\\
b-2 c=0
\end{gather*}
$$

Solve (8) \& (4)

$$
\begin{aligned}
& a i+b+c-d i=0 \\
& -a+b-2 c+2 d=0 \times i \\
& a i+b+c-d i=0 \\
& -a i+b i-2 c i+2 d i=0 \\
& b(1+i)+c(1-2 i)+i d=0
\end{aligned}
$$

Solve (5) \& (6) by cross x^{n} method

$$
\begin{aligned}
& b-2 c+0 d=0 \\
& b(1+i)+c(1-2 i)+i d=0 \\
& \frac{b}{\mid-2} \begin{array}{l}
-2 \\
1-2 i
\end{array}\left|=\frac{-c}{1}\right| \begin{array}{cc}
1 & 0 \\
1+i & i
\end{array}\left|=\frac{d}{1} \begin{array}{c}
12 \\
1+i \\
1-2 i
\end{array}\right| \\
& \frac{b}{-2 i-0}=\frac{-c}{i-0}=\frac{d}{1-2 / i+2+2 i}=K \\
& \frac{b}{-2 i}=\frac{-c}{i}=\frac{d}{3}=K
\end{aligned}
$$

\qquad
\qquad

$$
\begin{aligned}
b=-2 i k, \quad-c & =i k, \quad d=3 k \\
c & =-i k
\end{aligned}
$$

put b, c, d in (2)

$$
\begin{gathered}
a-2 / k+2 i k-6 k=0 \\
a-6 k=0 \\
a=6 k
\end{gathered}
$$

put all values in ω

$$
\begin{aligned}
\omega & =\frac{6 k z-2 i k}{-i k z+3 k} \\
& =\frac{k(6 z-2 i)}{k(-i z+3)} \\
\omega & =\frac{6 z-2 i}{-i z+3}
\end{aligned}
$$

To find the invariant points of this transformation are obtained by taking $\omega=Z$.

$$
\begin{aligned}
& z= 6 z-2 i \\
&-i z+3 \\
&-i z^{2}+3 z=6 z-2 i \\
&-i z^{2}+3 z-6 z+2 i=0 \\
&-i z^{2}-3 z+2 i=0 \\
& i z^{2}+3 z-2 i=0
\end{aligned}
$$

$$
\begin{aligned}
& z=-\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-3 \pm \sqrt{9-4 \times i x-2 i}}{2 i} \\
& =\frac{-3 \pm \sqrt{9+8 i^{2}}}{2 i} \\
& =\frac{-3 \pm \sqrt{9-8}}{2 i} \quad\left(i^{2}=-1\right) \\
& =\frac{-3 \pm \sqrt{1}}{2 i} \\
& =-\frac{3 \pm 1}{2 i} \\
& z=\frac{-3+1}{2 i}, \quad z=\frac{-3-1}{2 i} \\
& z=\frac{-22}{2 i} \\
& z=\frac{-4}{2 i} \\
& z=\frac{-1}{i} \\
& z=\frac{-2}{i} \\
& z=-(-i) \\
& \left.\begin{array}{l}
z=-2(y / i) \\
z=-2(-i)
\end{array}\right] \frac{1}{i}=\frac{1}{i} \times-\frac{i}{-i} \\
& z=2 i / \\
& \therefore \text { Invajiant poinf are } \\
& \text { u, } 2 i^{i}
\end{aligned}
$$

(3) Find the B.L.T which maps $z_{1}=-1$, $z_{2}=0, z_{3}=1$ in to $\omega_{1}=0, \omega_{2}=i, \omega_{3}=3 i$

Soing

$$
\begin{equation*}
\omega=\frac{a z+b}{c z+d} \tag{1}
\end{equation*}
$$

when $\omega=0 \quad z=-1$
(1) become\&

$$
\begin{aligned}
& 0=\frac{-a+b}{-c+d} \\
& -a+b=0
\end{aligned}
$$

when $\omega=i, z=0$

$$
u=\frac{0+b}{0+d} \Rightarrow b=i^{i d} \Rightarrow b-i d=0-\varepsilon
$$

when $\omega=3 i, z_{3}=1$
(1) becomes

$$
\begin{align*}
& 3 i=\frac{a+b}{c+d} \\
& 3 c i+3 d i=a+b \\
& a+b-3 c i-3 d i=0 \tag{4}
\end{align*}
$$

Solve (2) \& (3)

$$
\begin{align*}
& -a+b=0 \\
& \Leftrightarrow \not b-d i=0 \\
& -a+d i=0 \tag{5}
\end{align*}
$$

\qquad
Solve (3) \& (5) by cross x^{n} method

$$
\begin{aligned}
& o(a)+b-i d=0 \\
& -a+o(b)+i d=0 \\
& \frac{a}{1}-\frac{i}{0}-i\left|=\frac{-b}{0}-i\right| \begin{array}{cc}
0 \\
-i & i
\end{array}\left|=\left|\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right|\right. \\
& \frac{a}{i}=\frac{-b}{-i}=\frac{d}{1}=k \\
& a=i-b=-i k \quad d=K \\
& a=i, \quad b=i k \quad d=K
\end{aligned}
$$

put in

$$
\begin{gathered}
i k+i k-3 c i-3 k i=0 \\
-3 c i-k i=0 \\
-i(3 c+k)=0 \\
3 c+k=0 \\
3 c=-k 4 \\
c=-k / 3
\end{gathered}
$$

put ale values in ω
\qquad

$$
\begin{aligned}
& \omega=\frac{i z+i k}{-k / 3 z+k} \\
& \omega=\frac{i k(z+1)}{k(-2 / 3+1)} \\
& \omega=\frac{i(z+1)}{(-2 / 3+1)}
\end{aligned}
$$

(6)

$$
\begin{aligned}
& \omega=\frac{i(z+1)}{\left(-\frac{2+3)}{3}\right.} \\
& \omega=\frac{3 i(z+1)}{-2+3}
\end{aligned}
$$

(4) Find the B.L.T which maps $z=\infty, i, 0$ in to $\omega=-1,-i, 1$. Also find the fixed points of transformations. (Invariant points)
$801^{n} \mathrm{~b}$

$$
\begin{align*}
& \omega=\frac{a z+b}{c z+d} \\
& \omega=\frac{z(a+b / z)}{z(c+d / z)} \\
& \omega=\frac{a+b / z}{c+d / z} \tag{4}
\end{align*}
$$

when $z=\infty, \omega=-1$

- becomes

$$
\begin{aligned}
& -1=\frac{a+0}{c+0} \\
& -1=\frac{a}{c} \Rightarrow a=-c \Rightarrow a+c=0
\end{aligned}
$$

when $z=i, \omega=-i$
becomes $-i=\frac{a+b / i}{c+d / i}$

$$
\begin{aligned}
& -i=\frac{\frac{a i+b}{i}}{\frac{c i+d}{i}} \\
& -i=\frac{a i+b}{c i+d}
\end{aligned}
$$

$$
\begin{align*}
-i(c i)-d i & =a i+b \\
-c i^{2}-d i & =a i+b \\
-c(-1)-d i & =a i+b \\
c-d i & =a i+b \\
a i+b-c+d i & =0 \tag{2}
\end{align*}
$$

when $z=0, \omega=1$
\qquad

* b bcomes $\quad 1=\frac{b}{d}$

$$
\begin{equation*}
b=d \Rightarrow b-d=0 \tag{3}
\end{equation*}
$$

Solve (1) \& (2)

$$
\begin{align*}
& a+o(b)+\phi+o d=0 \\
& a i+b-c+d i=0 \\
& \hline a(1+i)+b+d i=0 \tag{4}
\end{align*}
$$

by cross x^{n} Sove (3) \& (4)

$$
\begin{aligned}
& a(0)+b-d=0 \\
& a(1+i)+b+d i=0 \\
& \frac{a}{\mid 1-1} \begin{array}{c}
1 \\
1 \\
i
\end{array}\left|\quad-\frac{-b}{0}-1\right| \begin{array}{cc}
1+i & i
\end{array}\left|\quad=\frac{d}{0} \begin{array}{c}
0 \\
1+i
\end{array}\right| \\
& \frac{a}{i+1}=\frac{-b}{0+1+i}=\frac{d}{-(1+i)}=k \\
& \begin{array}{ll}
a=k(1+i) \quad-b=k(+1+i), d=-k(1+i) \\
a=k(1+i) \quad b=-k(1+i) \\
b=-k(1+i)
\end{array}
\end{aligned}
$$

put a, b, d valuey in (2)

$$
\frac{\text { put } a, b, d \text { valuey } 1+i) i-k(1+i)-c-k(1+i) i=0}{k\left(i+i^{2}\right)+k(1+i)-c+k\left(i+i^{2}\right)=0}
$$

$$
\begin{array}{r}
i^{2}=-1 \\
\hline K(i-1)-K(1+i)-c-K(i-1)=0 \\
i K-k-K-i K-c-i K A K=0 \\
-K-c-i K=0 \\
-c-i k-K=0 \\
-c=K+i K \\
c=-k-i K \\
c=-K(1+i)
\end{array}
$$

put a, b, c, d in w

$$
\begin{aligned}
\omega & =\frac{a z+b}{c z+d} \\
& =\frac{k(1+i) z+(-k)(1+i)}{-k(1+i) z-k(1+i)} \\
& =\frac{k(1+i)(z-1)}{k(1+i)(-z-1)} \\
& =\frac{1(1-2)}{t(z+1)} \\
\omega & =\frac{1-z}{1+z}
\end{aligned}
$$

\qquad
\qquad
To find invariant points tace $\omega=z$

$$
\begin{aligned}
& z=\frac{1-z}{1+z} \\
& z+z^{2}=1-z \\
& z^{2}+z+z-1=0 \\
& z^{2}+2 z-1=0 \\
& z=\frac{-b \pm \sqrt{b^{2}-u a s}}{2 a} \\
&=\frac{-2 \pm \sqrt{H+4}}{2} \\
&=\frac{-2 \pm \sqrt{8}}{2} \\
&=\frac{-2 \pm 2 \sqrt{2}}{2} \\
& z=-1 \pm \sqrt{2}
\end{aligned}
$$

\therefore invariant points are $-1+\sqrt{2},-1-\sqrt{2} /$
(5) Do yourself

Find the B.A.T which maps the points $z=1, i,-1$ into $\omega=0,1$, ω

$$
\begin{gathered}
\omega=\frac{a z+b}{c z+d} \\
z=1, \omega=0 ;
\end{gathered}
$$

*) becomes

$$
\begin{aligned}
& 0=\frac{a+b}{c+d} \\
& a+b=0-\omega \\
& z=i, \omega=1 ; 1=\frac{a i+b}{c i+d} \\
& a i+b-c i-d=0-(2 \\
& z=-1, \omega=\infty \\
& \text { comider } \frac{1}{\omega}=\frac{c z+d}{a z+b}, \quad\left(\frac{1}{\infty}=0\right) \\
& 0=-\frac{c+d}{-a+b} \\
& -c+d=0-
\end{aligned}
$$

adove (2) \& (3)

$$
\begin{array}{r}
a i+b-c i-d=0 \\
-c+d=0 \\
a i+b-c(i+1)=0 \tag{4}
\end{array}
$$

Solving (1) \& (4) by coross x^{n} method

$$
\begin{aligned}
& a+b+o c=0 \\
& a i+b-c(i+1)=0 \\
& \left.\frac{a}{\left\lvert\, \frac{1}{1}-(i+1)\right.}\left|=\frac{-b}{\left|\begin{array}{ll}
1 & 0 \\
a-(i+1)
\end{array}\right|}=\frac{c}{1}\right| \begin{array}{ll}
1 & 1 \\
i & 1
\end{array} \right\rvert\,
\end{aligned}
$$

$$
\begin{aligned}
& \frac{a}{-(i+1)}=\frac{b}{-(i+1)}=\frac{c}{1-1}=k \\
& \frac{a}{-(i+1)}=k, \quad \frac{b}{i+1}=k, \quad \frac{c}{1-i}=K \\
& a=-k(i+1) \quad b=k(i+1) \quad c=k(1-i)
\end{aligned}
$$ put a, b, c in (2)

put $a, b, c(i+1) i+k(i+1)-k(l-i) i-d=0$

$$
-k i^{2}-k i+k i+k+k i^{2}-k i-d=0
$$

$$
-k(-1)-i k+k+k(-1)-d=0
$$

$$
\begin{gathered}
+k-i k+k-k-d=0 \\
k(1-i)-d=0
\end{gathered}
$$

$$
k(1-i)-d=0
$$

$$
d=k(1-i)
$$

put an valuy in ω

$$
\begin{aligned}
& \omega=\frac{-k(1+i) z+(1+i)\}}{k\{(1-i) z+(1-i)\}} \\
& \omega=\frac{(1+i)(1-z)}{(1-i)(1+z)} \\
& x^{14} \& \div b y 1+i \\
& \omega=\frac{(1+i)(1-2)(1+i)}{(1-i)(1+z)(1+i)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(1+i)^{2}(1-2)}{\left(1-i^{2}\right)(1+2)} \\
& =\frac{\left(1+i^{2}+2 i\right)(1-2)}{(1+1)(1+2)} \\
& =\frac{(1-1+2 i)(1-2)}{(2)(1+2)} \\
& \omega=i\left[\frac{1-2}{1+2}\right]
\end{aligned}
$$

(6) Find the B.d.T which map the points $z=0,1, \infty$ in to the points $\omega=-5,-1,3$ rypectively. what are the invariant points?

Son.

$$
\begin{aligned}
& \omega=\frac{a z+b}{c z+d} \\
& z=0, \omega=-5
\end{aligned}
$$

becomes $-5=\frac{b}{d}$

$$
\begin{array}{r}
b=-5 d \\
b+5 d=0 \tag{1}\\
z=1, \omega=-1
\end{array}
$$

$$
\text { (*) becomes } \begin{aligned}
& -1=\frac{a+b}{c+o l} \\
& -c-d=a+b
\end{aligned}
$$

$$
\begin{align*}
& a+b+c+d=0-\infty \\
& z=\infty, w=3 \\
& \omega=\frac{z(a+b / z)}{z(c+d / z)} \\
& w=\frac{(a+b / \infty)}{(c+d / \infty)} \\
& 3=\frac{a+0}{c+0} \\
& 3=\frac{a}{c} \Rightarrow a=3 c-(* *) \\
& -3 c+a=0-3 \tag{3}
\end{align*}
$$

Solve (2) \& (3)

$$
\begin{aligned}
a+b+c+d & =0 \\
c+\frac{a+0 b-3 c+0 d}{b+4 c+d} & =0 \\
b+4 c+ & =0
\end{aligned}
$$

Solve (9) \& (a) by cross x^{n} mettod

$$
\begin{aligned}
& b+0 c+5 d=0 \\
& b+4 c+d=0 \\
& \left.\frac{b}{\left|\begin{array}{ll}
0 & 5 \\
4 & 1
\end{array}\right|}=\frac{-c}{\left|-\left|\begin{array}{ll}
1 & 5 \\
1 & 1
\end{array}\right|\right.}=\frac{d}{1-4}=\frac{d}{1} \frac{0}{1} \frac{4}{1} \right\rvert\, \\
& \frac{b}{-20}=K
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{b}{-20}=K, & \frac{c}{4}=K, \quad \frac{d}{4}=K \\
b=-20 K, & c=4 K, \quad d=4 K
\end{array}
$$

put b, c, d in (2)

$$
\begin{aligned}
& a-20 k+4 k+4 k=0 \\
& a-12 k=0 \\
& a=12 k \\
& \omega=\frac{k(12 z-20)}{k(4 z+4 k)} \\
& =\frac{K(3 z-5)}{K(z+1)} \\
& \omega=\frac{3 z-5}{z+1}
\end{aligned}
$$

(er) ye (x*) \& (***) in (2)

$$
\text { (2) } \Rightarrow 3 c-5 d+c+d=0
$$

p ut $c=d$ in (2)

$$
\begin{align*}
& a+b+d+d=0 \\
& a+b+2 d=0 \tag{8}
\end{align*}
$$

Solve (1) \& (5) by cross x^{n} method

$$
\left.\begin{aligned}
& 0(a)+b+5 d=0 \\
& a+b+2 d=0 \\
& \frac{a}{1} \frac{5}{1} 2
\end{aligned}\left|=\frac{-b}{0}=\frac{d}{1} \begin{array}{c}
2
\end{array}\right| \begin{array}{cc}
0 & 1 \\
1 & 1
\end{array} \right\rvert\,-\frac{-b}{-5}=\frac{d}{-1}=K
$$

(2) \Rightarrow

$$
\begin{gathered}
-3 k+5 k+c-k=0 \\
k+c=0 \\
c=-k \| \\
\frac{k(-3 z+5)}{k(-z-1)} \\
=+\frac{(3 z-5)}{+(z+1)} \\
\omega=\frac{3 z-5}{z+1}
\end{gathered}
$$

To find invariant points put $\omega=z$

$$
\begin{aligned}
& z=\frac{3 z-5}{z+1} \\
& z^{2}+2=3 z-5 \\
& z^{2}+z-3 z+5=0 \\
& z^{2}-2 z+5=0 \\
& z=\frac{2 \pm \sqrt{4-20}}{2} \\
& =\frac{2 \pm \sqrt{-16}}{2} \\
& =\frac{2 \pm i 4}{2}
\end{aligned}
$$

$Z=1 \pm 2 i^{\circ}$ are the invariant points.
Complex line integral:

Comider a Contineou function $f(2)$ of the Complex variable $z=x+i y$ defined at au points $o p$ a curve
\qquad
C extending from P to On. Divide the Curve C in to n pants by arbitanily falling points $p=p(20), p\left(2_{1}\right), p_{2}\left(2_{2}\right)$. $P_{k}(2 k) \cdots P_{n}(2 n)=0$? on the curve C. let α_{k} be any point on the arc of the curve form P_{k-1} to P_{k} and dec $\delta z_{k}=Z_{k}-Z_{k-1}$ where $k=1,2,3 \ldots n$

Then

$$
\lim _{n \rightarrow 10} \sum_{k=1}^{n} f(\alpha k) \delta \delta_{k} \text { where max }\left|\delta_{2 k}\right| \rightarrow 0
$$

a) $n \rightarrow \infty$ is defined as complex dine integral along the path C wally devoted by $\int_{0} f(z) d z$.
propertig of Complex integral:
(1) If $-c$ denote the curve traversed from On to p then $\int_{-0} f(z) d z=-\int_{C} f(z) d z$
(2) If C is split in to a no\%. of pants $C_{1}, C_{2}, C_{3} \ldots$ then

$$
\int_{0} f(z) d z=\int_{c_{1}} f(z) d z+\int_{c_{2}} f(z) d z+\int f(z) d z+\cdots
$$

(3) If $\lambda_{1} \& \lambda_{2}$ are conptantf then
\qquad

$$
\int_{c}\left[\lambda_{1} f_{1}(z) \pm \lambda_{2} f_{2}(z)\right] d z=\lambda_{1} \int_{0} f_{1}(z) d z \pm \int_{C_{2}} f_{2}(z) d z
$$

Line integral of a complex valued function
let $f(z)=u(x, 4)+i v(x, y)$ be a complex valued function defined over a ougion R and C be a curve in the region Then

$$
\begin{aligned}
& \int_{0} f(z) d z=\int_{0}(u+i v)(d x+i d y) \\
& \int_{0} f(z) d z=\int_{C}(u d x-v d y)+i \int_{C}(v d x+u d y)
\end{aligned}
$$

This Show, that evaluation p a dine integral o a complex valued function is nothing but the evaluation $o f$ line integrals of real valued functions.

Problems:
(4) Evaluate $\int_{C} z^{2} d z$
(a) along the straight line from $z=0$ to $3+i$
(5) along the curve madeup of two line segments one from $z=0$ to 3 \& another from $z=3$ to $3+i$
8) ${ }^{2} 2$

here z varies from 0 to $3+i$ meany (x, y) varix from $(0,0)$ to $(3,1)$.
The eq of line joining the points $(0,0)$ and $(3,1)$ is given by

$$
\begin{gathered}
\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
\frac{y-0}{x-0}=\frac{1-0}{3-0} \\
\frac{y}{x}=\frac{1}{3} \quad(r) y=\frac{x}{3} \\
z^{2}=(x+i y)^{2} \\
=x^{2}+i^{2} y^{2}+2 x i y \\
z^{2}=x^{2}-y^{2}+i 2 x y \\
d z=d x+i d y \\
\int z^{2} d z=\int_{c}=\left\{\left(x^{2}-y^{2}\right)+i 2 x y\right\}(d x+i d y) \\
=\int_{(0,0)}^{(3,1)}\left\{\left(x^{2}-4^{2}\right) d x+i\left(x^{2}-y^{2}\right) d y+\right. \\
=\int_{(0,0)}^{(3,1)}\left(x^{2}\right)\left(x^{2}-y^{2}\right) d x+i\left(x^{2}-y^{2}\right) d y+i x y d x
\end{gathered}
$$

$$
=\int_{(0,0)}^{(3,1)}\left\{\left(x^{2}-4^{2}\right) d x-2 x y d y\right\}+i \int_{(0,0)}^{(3,1)}\left\{\left(x^{2}-y^{2}\right) d y+2 x y d x\right\}
$$

see have $y=x$ or $x=3 y$ \& we shall Convert the $\frac{3}{3}$ integral into the variable y \& integrate coir. to y from 0 to 1 $\&$ also $d x=3 d y$

$$
\begin{aligned}
\int_{c} z^{2} d z & =\int_{y=0}^{1}\left\{\left(9 y^{2}-4^{2}\right) 3 d y-2(3 y) y d y\right\}+ \\
& i \int_{y=0}^{1}\left\{\left(9\left(y^{2}-y^{2}\right) d y+2(3 y) y 3 d y\right\}\right. \\
& =\int_{y}^{1}\left(24 y^{2} d y-6 y^{2} d y\right)+i \int_{y=0}^{1} 8 y^{2} d y+18 y^{2} d y \\
& =\int_{y=0}^{1} 18 y^{2} d y+i \int_{y=0}^{1} 26 y^{2} d y \\
& =18\left[\frac{y^{3}}{3}\right]_{0}^{1}+i 26\left[\frac{y^{3}}{3}\right]_{y=0}^{1} \\
& =18[1 / 3-0]+i 26[1 / 3-0] \\
& =18 / 3+i 26 / 3 \\
& =6+i 26 / 3 \text { along the given path }
\end{aligned}
$$

cay dx
(b) Segments from $z=0$ to $Z=3$ and then from $z=3$ to $3+i$ means (x, y) varies from $(0,0)$ to $(3,0) \&$ then from $(3,0)$ to $(3,1)$

$$
\begin{equation*}
\int_{0} z^{2} d z=\int_{c_{1}} z^{2} d z+\int_{c_{2}} z^{2} d z \tag{1}
\end{equation*}
$$

along $C_{1}: y=0 \Rightarrow d y=0 \& x$ varies from 0 to 3

$$
z^{2} d z \text { becomes } x^{2} d x
$$

along $C_{2}: x=3 \Rightarrow d x=0$ \& y varies from 0 to 1 $z^{2} d z$ becomes $(3+i y)^{2} i d y$.
Now (4) becomes

$$
\begin{aligned}
\int_{0} z^{2} d z & =\int_{x=0}^{3} x^{2} d x+i \int_{y=0}^{1} \frac{(3+i y)^{2} d y}{(a+b)^{2}} \\
& =\left[\frac{x^{3}}{3}\right]_{x=0}^{3}+i \int_{y=0}^{1}\left(9-y^{2}+6 i y\right) d y
\end{aligned}
$$

$$
\begin{aligned}
& =9+i\left[9 y-\frac{y^{3}}{3}+3 i y^{2}\right]_{0} \\
& =9+i\left(9-\frac{1}{3}+3 i-0\right) \\
& =9+9 i-\frac{1}{3} i-3 \\
& =6+9 i-\frac{1}{3} i \\
& =6+\frac{27 i-i}{3} \\
& =6+\frac{26 i}{3}
\end{aligned}
$$

$\int_{0} z^{2} d z=6+i \frac{26}{3} \| l$ along the given path
(3) Evaluate $\int_{0}|z|^{2} d z$ where c is a Square with following vertices $(0,0)(1,0)(1,1)(0,1)$

ch have $\left.|z|^{2} d z=\sqrt{x^{2}+y^{2}}\right)^{-y}(d x+i d y)$

$$
|z|^{2} d z=\left(x^{2}+y^{2}\right) d x+i d y
$$

along $o p\left(c_{1}\right), y=0 \Rightarrow d y=0 . \quad|z|^{2} d z=x^{2} d x$ when $0 \leq x \leq 1$
along $\operatorname{par}\left(c_{2}\right), x=1 \Rightarrow d x=0 . \quad|z|^{2} d z=\left(1+y^{2}\right) i d y, 0 \leq y \leq 1$
along on $R\left(C_{3}\right), y=1 \Rightarrow d y=0 .|z|^{2} d z=\left(x^{2}+1\right) d x, 1 \leq x \leq 0$ along $R O(c u), x=0 \Rightarrow d x=0 .|2|^{2} d z=y^{2}(i d y)$ where $1 \leq y \leq 0$

$$
\begin{aligned}
\left.\int_{c} \mid z\right)^{2} d z= & \int_{x=0}^{1} x^{2} d x+i \int_{y=0}^{1}\left(1+y^{2}\right) d y+\int_{x=1}^{0}\left(x^{2}+1\right) d x \\
& +i \int_{y=4}^{0} y^{2} d y \\
= & {\left[\frac{x^{3}}{3}\right]_{0}^{1}+i\left[y+\frac{y^{3}}{3}\right]_{0}^{1}+\left[\frac{x^{3}}{3}+x\right]_{1}^{1}+i\left[\frac{y^{3}}{3}\right]_{1}^{0} } \\
= & \left.\left(\frac{1}{3}-0\right)+i\left(1+\frac{1}{3}-0\right)+\left(\frac{1}{3}+1\right)+0\right)+i\left(0-\frac{1}{3}\right] \\
= & \frac{1}{3}+i\left(\frac{4}{3}\right)-\frac{4}{3}+i\left(-\frac{1}{3}\right) \\
= & \frac{1}{3}+i \frac{4}{3}-\frac{4}{3}-\frac{i}{3} \\
= & \frac{1+4 i-4-i}{3}=-\frac{B+3 i}{3}=-1+i
\end{aligned}
$$

$\int_{c}|z|^{2} d z=-1+i$ along the given path
(3) Evaluate $\int_{0}^{1}(\bar{z})^{2} d z$ dong:
(a) the line $x=2 y$
(b) the real a oily up to 2 \& then vertically to 2 ti
So1no let $I=\int_{0}^{2+i}(\bar{z})^{2} d z$
we have $\bar{z}=x-i y$

$$
\begin{aligned}
&(\bar{z})^{2}=(x-i y)^{2} \\
&=x^{2}+(i y)^{2}-2 x i y \\
&=x^{2}+i^{2} y^{2}-2 x i y \\
&(\bar{z})^{2}=x^{2}-y^{2}-i 2 x y \\
&(\bar{z})^{2}=\left(x^{2}-y^{2}\right)-i(2 x y) \\
& d z=d x+i d y
\end{aligned}
$$

(a) along $x=2 y, d x=2 d y$ $z=0$ to $2+i \Rightarrow(x, y)$ varies from $(0,0)$ to $(2,1)$ cohere $0 \leqslant y \leqslant 1$

$$
\begin{aligned}
I & =\int_{y=0}^{1}\left(\left((2 y)^{2}-y^{2}\right)-i(2(2 y) y)\right)(2 d y+i d y) \\
& =\int_{y=0}^{1}\left(4 y^{2}-y^{2}-i H y^{2}\right)(2 d y+i d y) \\
& =\int_{y=0}^{1}\left(3 y^{2}-i+y^{2}\right)(2 d y+i d y)
\end{aligned}
$$

\qquad
\qquad

$$
\begin{aligned}
& =\int_{y=0}^{1}(3-4 i) y^{2} \cdot d y(2+i) \\
& =(3-4 i)(2+i) \int_{y=0}^{1} y^{2} \cdot d y
\end{aligned}
$$

$$
=\left(6+3 i-8 i-4 i^{2}\right)\left[y^{3} / 3\right]_{0}^{1}
$$

$$
=(6-5 i+4)[1 / 3-0]
$$

$$
T=(10-5 i) \frac{1}{3} \text { along the given path. }
$$

(b) $I=\int_{O A}(\bar{z})^{2} d z+\int_{A B}(\bar{z})^{2} d z$-(1)

Along $O A$ cohere $0=(0,0)$ and

$$
\begin{aligned}
& A=(2,0) ; y=0 \Rightarrow d y=0 \text { and } \\
& 0 \leq x \leq 2 \text { and }(\Sigma)^{2} d z=x^{2} d x
\end{aligned}
$$

Along $A B$ where $A=(2,0)$

and $B=(2,1) ; x=2 \Rightarrow d x=0$ and $0 \leq y \leq 1$ a rang gelid

$$
(z)^{2} d z=\left(2^{2}-y^{2}\right)-i(H y)
$$

Now (A) become

$$
\begin{aligned}
\int_{\text {Now }}\left(\left(\frac{1}{2}\right)^{2} d z\right. & \left.=\int_{x=0}^{2} x^{2} d x=\frac{x^{3}}{3}\right]_{0}^{1}=\frac{8}{3} \\
\int_{A B}(z)^{2} d z & =1 \int_{y=0}^{1}\left[\left(4-4^{2}\right)-4 i y\right] d y \\
& {\left[4 y-\frac{y^{3}}{3}\right]_{0}^{1}+4[4 / 2]_{0}^{2} } \\
& =i\left[\left(4-\frac{1}{3}\right)-0\right]+4[1 / 2-0] \\
\int_{A B}(z)^{2} d z & =i \frac{11}{3}+2
\end{aligned}
$$

\therefore (1) becomes

$$
\int_{A B} z^{2} d z+\int_{A B} z^{2} d z=8+\left(\frac{i 11}{3}+2\right)
$$

(4) Evaluate $\int_{(0,3)}^{(2,4)}\left(24+x^{2}\right) d x+(3 x-y) d y$ along the following paths
(a) the parabola $x=2 t, y=t^{2}+3$
(5) the straight line from $(0,3)$ to $(2,4)$

Sol no
a) x varies from 0 to 2 and hence If $x=0,2 t=0 \therefore t=0 \quad t$ also If $x=2,2 t=2: t=1\}$ variel from

$$
\begin{aligned}
I & \int_{0,3)}^{1}\left(2,4+x^{2}\right) d x+(3 x-y) d y \\
I & =\int_{t=0}^{1}\left\{2\left(t^{2}+3\right)+4 t^{2}\right\} 2 d t+\left\{3(2 t)-\left(t^{2}+3\right)\right\} \\
& =\int_{0}^{1}[2 t d t \\
& =\int_{0}^{1}\left(6 t^{2}+6+4 t^{2}\right) 2 d t+\left(6 t-t^{2}-3\right) 2 t d t \\
& =\int_{0}^{1}\left(12 t^{2}+12 d t+\left(6 t-t^{2}-3\right) 2 t d t\right. \\
& =\int_{0}^{1}\left(24 t^{2}-2 t^{3}-6 t+12\right) d t \\
& =\left[\frac{24}{8} \frac{t^{3}}{3}-\frac{2 t 4}{4}-6 \frac{t^{2}}{2}+12 t\right]_{0}^{1} \\
& =8[1-0]-\frac{1}{2}(1-0)-3(1-0)+12(1-0) \\
& =8-\frac{1}{2}-3+12 \\
& =\frac{1}{8} \frac{1}{2} \\
& =\frac{34-1}{2}
\end{aligned}
$$

$I=33 / 2 / \mid$ along the given path
(b) Equation of straight line joining $(0,3)$ \& $(2,4)$ y given by

$$
\begin{gathered}
\frac{y-3}{x-0}=\frac{4-3}{2-0} \\
\frac{y-3}{x}=\frac{1}{2} \\
x=2 y-6 \\
d x=2 d y \\
I=\int_{y=3}^{4}\left\{2 y+(2 y-6)^{2}\right\} 2 d y+\{3(2 y-6)-y\} d y \\
=\int_{3}^{4}\left\{2\left(2 y+4 y^{2}+36-2 \times 2 y \times 6\right)+(6 y-18-y)\right\} d y \\
=\int_{3}^{4}\left\{\left(4 y+8 y^{2}+72-48 y\right)+(5 y-18)\right\} d y \\
=\int_{3}^{4}\left(8 y^{2}-39 y+54\right) d y \\
=\left[8 \frac{y^{3}}{3}-39 \cdot \frac{y^{2}}{2}+54 y\right]_{3}^{4} \\
=\frac{8}{3}\left[4^{3}-3^{3}\right]-\frac{39}{2}\left[4^{2}-3^{2}\right]+54[4-3] \\
=\frac{8}{3}[64-27]-\frac{39}{2}[16-9]+54
\end{gathered}
$$

$I=97 / 6$ along the given pet
\qquad
\qquad
(5) Evaluate $\int_{1-i}^{2}(2 x+i y+1) d z$ along the
following paths:
(a) $x=t+1, \quad y=2 t^{2}-1$
(b) Straight line joining $(1-i)$ and $(2+i)$

SO110

$$
\begin{aligned}
& \text { (a) } x=t+1, y=2 t^{2}-1 \\
& d x=d t, \quad d y=4 t d t
\end{aligned}
$$

x vail from 1 to 2

$$
\begin{aligned}
& \text { If } x=1, t=Q \\
& x=2, \quad t=1 \\
& d z=d x+i d y, d z=d t+i 4 t d t \\
& I=\int_{t=0}^{1}\left\{2(t+1)+i\left(2 t^{2}-1\right)+1\right\}\{d t+i \mu+d t\} \\
& =\int_{0}^{1}\left(2 t+2+1+i 2 t^{2}-i\right) d t(1+i 4 t) \\
& =\int_{0}^{1}\left(2 t+2 i t^{2}-i+3\right)(1+i 4 t) d t \\
& =\frac{\int_{0}^{1}\left\{2 t+i 8 t^{2}+2 i t^{2}+i^{2} 8 t^{3}-i-i 4 t\right.}{+3+i 12 t 2 d t} \\
& +3+i 12 t\} d t \\
& =\int_{0}^{1}\left\{\frac{2 t+i 1 \theta t^{2}-8 t^{3}-i-(-1) 4 t+3}{+i 12 t\} d t}\right. \\
& \left.=\int_{0}^{1}\left\{2 t+4 t+i 10 t^{2}-8 t^{3}-1+3+i 12\right\}^{3}\right\} t t \\
& =\int_{0}^{1}\left\{6 t+i 10 t^{2}-8 t^{3}-i+3+i 12 t\right\} d t
\end{aligned}
$$

\qquad
PRAKASH Prose

$$
\begin{aligned}
& {\left[\frac{6 t^{2}}{2}+i 10 \frac{t^{3}}{3}-8 \frac{t^{4}}{4}-i t+3 t+i 12 t^{2}\right.} \\
& {\left[3 t^{2}+i \frac{10}{3} t^{3}-2 t^{4}-i t+3 t+i 6 t^{2}\right]_{0}^{1}} \\
& {\left[3+i \frac{10}{3}-2-i+3+i 6\right]} \\
& =4+i\left(\frac{10}{3}-1+6\right) \\
& =4+i\left(\frac{10-3+18)}{3}\right.
\end{aligned}
$$

$T=4+i \frac{25}{3}$ along the given path.
Equation of the straight line joining $(1,-1)$ and $(2,1)$ is given by

$$
\begin{aligned}
& \frac{y+1}{x-1}=\frac{1-(-1)}{2-1} \\
& \frac{y+1}{x-1}=\frac{2}{1} \\
& y+1=2 x-2 \\
& y=2 x-2-1 \\
& y=2 x-3 \\
& I=\int_{x=1}^{2}\{2 x+2 d x \\
& =\int_{x=1}^{2}\{2 x+i(2 x-3)+1\}\{d x+i 2 d x\}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{x=1}^{2}\{2(1+i)(1+2 i) x+(1-3 i)(1+2 i)\} d x \\
& I=\int_{x=1}^{2}\{2(-1+3 i) x+(1-3 i)(1+2 i)\} d x \\
& =(1-3 i) \int_{x=1}^{2}\{-2 i+(1+2 i)\} d x \\
& =(1-3 i)\left\{-2\left(\frac{x^{2}}{2}\right)_{1}^{2}+(x+2 i x)^{2}\right\} \\
& =(1-3 i)\{-(4-1)+(2+4 i-1-2 i)\} \\
& =(1-3 i)\{-3+1+2 i\} \\
& =(1-3 i)(-2+2 i) \\
& =-2+2 i+6 i-6 i^{2} \\
& =-2+8 i-6(-1) \\
& =-2+8 i+6 \\
& I=4+8 i \text { along the given path } \\
& =4
\end{aligned}
$$

\qquad
dd Cauchy's theorem:
statement: If $f(2)$ is analytic at au points ingide and on a simple cloged curve C then $\int_{c} f(z) d z=0$
proof: Let $f(z)=$ utiv

$$
\begin{aligned}
& \int_{c} f(z) d z=\int_{c}(u+i v)(d x+i d y) \\
& \left.\int_{c} f(z) d z=\int_{c}(u d x-v d y)+i \int_{c}(v d x+u d y)-\right\}
\end{aligned}
$$

$m=4$ we have Green's theorem in a plane
$\frac{\partial m}{\partial y}=\frac{\partial u}{\partial y}$ stating that if $M(x, y) \& N(x, y)$ Dy Dy are two real valued function, having $N=-V \quad$ Continuous fingt order paptice desivativy $\frac{\partial N}{\partial x}=\frac{-\partial v}{\partial x}$ in a region R bounded by curve C

$$
\frac{\partial=v}{\frac{\partial m}{\partial y}=\frac{\partial v}{\partial y}} \int_{c} m d x+\hat{N} d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial m}{\partial y}\right) d x d y
$$

$N=u$ Applying this theorem to the two line $\frac{\partial N}{\partial x}=\frac{\partial y}{\partial x}$ integrals in the RHS of (1) woe obtain

$$
\int_{0} f(z) d z=\iint_{R}\left(-\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y+i \iint_{R}\left(\frac{\partial u}{\partial x}-\frac{\partial r}{\partial y}\right) d x d y
$$

\qquad
\qquad
Since $f(2)$ is analytic
we have Cauchy -Riemann equations
$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x}=\frac{-\partial u}{\partial y}$ \& hence we have

$$
\begin{aligned}
& \int_{0} f(z) d z=\iint_{R}\left(\frac{\partial u}{\partial y}-\frac{\partial u}{\partial y}\right) d x d y+i \iint_{R}\left(\frac{\partial v}{\partial y}-\frac{\partial r}{\partial y}\right) \frac{d x}{d y} \\
& \int_{0} f(z) d z=0
\end{aligned}
$$

Thin prove Cauchy's theorem.
a) Cauchy's integral formula

Statement: If $f(z)$ is analytic inside and on a simple doped curve $C \&$ if δ^{\prime} is any point within C then

$$
f(a)=\frac{1}{2 \pi i} \int_{c} \frac{f(z)}{z-a} d z
$$

Proof: Since ' a ' is a point within c, we shall enolone it by a circle C_{1} with $z=a$ as centre and r as
$\left.-\frac{\partial r}{\partial y}\right) d x d y$ radius $\theta ; c$, life entirely within C.

The function $\frac{f(z)}{z-a}$ is analytic ingide and on the boundary Φ the annular. region between C \& C_{1} Now as a conrequence ϕ cauchy'? theorem

$$
\begin{equation*}
\int_{c} \frac{f(z)}{z-a} d z=\int_{c_{1}} \frac{f(z)}{z-a} d z \tag{1}
\end{equation*}
$$

The equation of C_{1} ($0^{\text {le with centre }}$ (a) \& radicy r) can be written in the form $|z-a|=r$. Thin in equivalent to $z-a=r e^{i \theta}$

$$
\begin{aligned}
z & =a+r e^{i \theta} \quad 0 \leq \theta \leq 2 \pi \\
d z & =i r e^{i \theta} d \theta
\end{aligned}
$$

use there cults in the RHS of (1)

$$
\begin{aligned}
\int_{c} \frac{f(z)}{z-\theta} d z & =\int_{\theta=0}^{2 \pi} \frac{f\left(a+r e^{i \theta}\right)}{r e^{i \theta}} i r e^{i \theta} d \theta \\
& =i \int_{\theta=0}^{2 \pi} f\left(a+r e^{i \theta}\right) d \theta
\end{aligned}
$$

Thin in true for any $\gamma>0$ however small. Hence of $r \rightarrow 0$ we get
\qquad

$$
\begin{aligned}
& \int_{c} \frac{f(z)}{z-a} d z=i \int_{\theta=0}^{2 \pi} f(a) d \theta \\
&=i f(a) \int_{\theta=0}^{2 \pi} 1 \cdot d \theta \\
&=i f(a)[\theta]_{0}^{2 \pi} \\
&=i f(a)(2 \pi-0) \\
& \begin{aligned}
\int \frac{f(z)}{z-a} d z & =i 2 \pi f(a) \\
f(a) & =\frac{1}{2 \pi i} \int_{c} \frac{f(z)}{z-a} d z
\end{aligned}
\end{aligned}
$$

Cauchy's integral formula.
Generalized Cauchy's integral formula:
Statement: If $f(2)$ is analytic inside and on a simple closed curve $C \&$ if ' a ' is a point within C then

$$
f^{(n)}(a)=\frac{n!}{2 \pi i} \int_{c} \frac{f(z)}{(z-a)^{n+1}} d z
$$

Proof: we have Cauchy'y integral formula

$$
f(a)=1 / 2 \pi i \int_{c} \frac{f(z)}{z-a} d z
$$

\qquad
Applying Leibnitz rale for differentiation under the integral sign we have

$$
\begin{align*}
f^{\prime}(a) & =\frac{1}{2 \pi i} \int_{c} f(z) \frac{\partial}{\partial a}\left(\frac{1}{z-a}\right) d z \\
& =\frac{1}{2 \pi i} \int_{c} f(z) \times-\frac{1}{(z-a)^{2}} x-1 d z \\
& =\frac{1}{2 \pi i} \int_{c} \frac{f(z)}{(z-a)^{2}} d z \\
f^{\prime}(a) & =\frac{1!}{2 \pi i} \int_{c} \frac{f(z)}{(z-a)^{2}} d z \text {-(2) } \tag{2}
\end{align*}
$$

gain apply Leibnitz rule for (2)

$$
\begin{aligned}
& f^{\prime \prime}(a)=\frac{1!}{2 \pi i} \int_{C} f(z) \frac{\partial}{\partial a}\left(\frac{1}{(z-a)^{2}}\right) d z \\
&=\frac{1!}{2 \pi i} \int_{0} f(z) \times \frac{-2}{(z-a)^{3}} \times-1 d z \\
&=\frac{1!}{2 \pi i} \int_{C} 2 \frac{f(z)}{(z-a)^{3}} d z \\
& f^{\prime \prime}(a)=\frac{2!}{2 \pi i} \int_{c} f(z) d z \\
&(z-a)^{3}
\end{aligned}
$$

\qquad

Continuing dike thy after differentiating n tiny we obtain

$$
f^{(n)}(a)=\frac{n!}{2 \pi i} \int_{c} \frac{f(z)}{(z-a)^{n+1}} d z
$$

$f^{(n)}(a)$ denote the $n^{\text {th }}$ derivative of $f(z)$ at $z=a$.

Problems
(1) Verify Cauchy's theorem for the function $f(2)=z^{2}$ where C is the square having vertices $(0,0)(1,0)(1,1)(0,1)$

Sol C is the square $O A B C$ and we have by cauchy's theorem

$$
\int_{c} f(z) d z=0
$$

\therefore we have to S.T

$$
\int_{O A} z^{2} d z+\int_{A B} z^{2} d z+\int_{B C} z^{2} d z+\int_{C} z^{2} d z=0
$$

Along $O A, y=0, d y=0, z^{2} d z=(x+i y)^{2} d x+i d y$

$$
z^{2} d z=x^{2} d x
$$

cohere $0 \leq x \leq 1$
\qquad
\qquad
Along $A B, x=1 \quad d x=0, z^{2} d z=(x+i y)^{2} d x+i d y$

$$
\begin{aligned}
& z^{2} d z=(1+i y)^{2} i d y \\
& z^{2} d z=\left(1+i^{2} y^{2}+2 i y\right) i d y \\
& z^{2} d z=\left(1-y^{2}+2 i y\right) i d y
\end{aligned}
$$

where $0 \leq y \leq 1$
Along $B C, \quad o g=1, \quad d o g=0 \quad z^{2} d z=(x+i y)^{2} d x+i d y$

$$
\begin{aligned}
& z^{2} d z=(x+i)^{2} d x \\
& z^{2} d z=\left(x^{2}+i^{2}+2 x i\right) d x \\
& z^{2} d z=\left(x^{2}-1+2 x i\right) d x \\
& \text { cohere } \quad 1 \leq x \leq 0
\end{aligned}
$$

Along $\operatorname{co}, x=0, d x=0 \quad z^{2} d z=(x+i y)^{2}(d x+i d y)$

$$
\begin{aligned}
& z^{2} d z=(i y)^{2}(i d y) \\
& z^{2} d z=-y^{2} ; d y
\end{aligned}
$$

where $1 \leqslant y \leqslant 0$
put an the in (1)
(1) become

$$
\begin{aligned}
& \int_{0}^{1} x^{2} d x+i \int_{0}^{1}\left(1-y^{2}+2 i y\right) d y+\int_{1}^{0}\left(x^{2}-1+2 x i\right) d x+\int_{1}^{0}+y^{2} i d y \\
& \left.\left.=\left[\frac{x^{3}}{3}\right]_{0}^{1}+i\left[y-\frac{y^{3}}{3}+i \neq \frac{y^{2}}{7}\right]_{0}^{1}+\left[\frac{x^{3}-x+i \frac{x^{2}}{3}}{1}\right]_{1}^{0}-i\right]_{1 / 3}^{0}\right]_{1}^{0}
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& =\left(\frac{1}{3}-0\right)+i\left(1-\frac{1}{3}+i\right)+(0-(1 / 3-1+i)) \\
& -i(0-1 / 3) \\
& =\frac{1}{3}+1-\frac{i}{3}+i^{2}-\frac{1}{3}+1-1+\frac{i}{3} \\
& =-1+1 \\
& =-1+1 \\
& =0 \\
& \int_{0}^{2} f(z) d z=0
\end{aligned}
$$

hence Cauchy's theorem is verified
(2) $\mathcal{S} \cdot T \int_{0}|z|^{2} d z=i-1$ having Verticy C is the Square 0 having Verticy $(0,0)(1,0)(1,1)(0,1)$ live reason for Cauchy's theorem not being satyfied.
sand C is a square $O A B C$

$$
\begin{align*}
& \int_{0}|z|^{2} d z=\left.\int_{O A}|z|^{2} d z+\int_{A B}|z|^{2} d z+\int_{B C} \mid z\right)^{2} d z \\
&+\int_{0}|z|^{2} d z \tag{1}\\
&|z|^{2}= x^{2}+y^{2} \\
& d z=d x+i d y \\
&|z|^{2} d z=\left(x^{2}+y^{2}\right)(d x+i d y)
\end{align*}
$$

$\left\{\begin{array}{l}z=x+i y \\ (z)=\sqrt{x^{2}+y^{2}} \\ \mid z)^{2}=\left(x^{2}+y^{2}\right)^{z} \\ |2|^{2}=x^{2}+y^{2}\end{array}\right.$

Along of, $y=0, d y=0 \quad|z|^{2} d z=x^{2} d x$, where $0 \leq x \leq 1$

$$
\int_{O A}|z|^{2} d z=\int_{0}^{1} x^{2} d x=\left[x^{3} / 3\right]_{0}^{1}=(1 / 3-0)=1 / 3
$$

Along $A B, \quad x=1, d x=0 \quad|z|^{2} d z=\left(1+y^{2}\right) i d y$
cohere $0 \leqslant y \leqslant 1$

$$
\begin{aligned}
\int_{A O}|z|^{2} d z & =\int_{0}^{1}\left(1+y^{2}\right) i d y=i \int_{0}^{1}\left(1+y^{2}\right) d y=i\left[y+\frac{y^{3}}{3}\right. \\
& =i[1+1 / 3-0]
\end{aligned}
$$

\qquad

$$
=i u / 3
$$

plong $B C, y=1 d y=0 \quad|z|^{2} d z=\left(x^{2}+1\right) d x$ where $\quad 1 \leqslant x \leqslant 0$

$$
\begin{aligned}
\int_{B C}|2|^{2} d z & =\int_{1}^{0}\left(x^{2}+1\right) d x=\left[\frac{x^{3}}{3}+x\right]_{1}^{0}=\left[0-\left(\frac{1}{3}+1\right)\right] \\
& =-4 / 3
\end{aligned}
$$

Along $c 0, x=0, d x=0 \quad|z|^{2} d z=y^{2}$ idy where $1 \leq y \leq 0$

$$
\begin{aligned}
\int_{0} \mid y^{2} d z & =\int_{1}^{0} y^{2} i d y \\
& =-i / 3
\end{aligned}
$$

put an thue in (1)

$$
\begin{aligned}
\int_{c}|2|^{2} d z & =1 / 3+i 4 / 3-4 / 3-i / 3 \\
& =(1 / 3-4 / 3)+i(4 / 3-1 / 3) \\
& =-3 / 3+i 3 / 3 \\
\left.\int_{c} 12\right|^{2} d z & =-1+i / / \text { (n) } i-1 /
\end{aligned}
$$

According to Cacechy's theorrem we have to S.T $\int_{c} f\left(P^{\prime}\right) d z=0$
here $f(z)=(2)^{2}$

$$
\begin{aligned}
& u+i v=x^{2}+y^{2} \\
& u=x^{2}+y^{2} \\
& u_{x}=2 x=0 \\
& u_{y}=2 y
\end{aligned} v_{x}=0 . v_{y}=0 .
$$

$C-R \mathrm{eq}^{n}$ not satinfied hence $f(2)=|2|^{2}$ is not analytic
Thin in the reason for Cauchy's theorem not being satinfied.
(3) Verify Cauchy's theorem for the function $f(z)=z e^{-z}$ over the unit $o^{\prime e}$ with origin a) the centre.

Sol: we have to evaluate $\int_{0} z e^{-z} d z$ cohere C is the $O^{\text {ie }} \quad|z|=1$

$$
\begin{aligned}
& z=r e^{i \theta}, \quad 0 \leqslant \theta \leqslant 2 \pi \quad d z=i e^{i \theta} d \theta \\
& z=e^{i \theta} \\
& \int_{0} z e^{-2} d z=\int_{\theta=0}^{2 \pi} e^{i \theta} e^{-e^{i \theta}} i^{i} e^{i \theta} d \theta \\
& =i \int_{\theta=0}^{2 \pi} e^{2 i \theta} e^{-e^{i \theta}} d \theta \\
& \text { put } e^{i \theta}=t \therefore e^{i \theta} i d \theta=d t \text { or } d \theta=d t / i t \\
& \text { when } \theta=0, t=e^{0}=1 \\
& \theta=2 \pi, \quad t=e^{2 \pi i}=\cos 2 \pi+i \sin 2 \pi \\
& t=1
\end{aligned}
$$

$$
\begin{aligned}
\int_{c} 2 e^{-z} d z & =\int_{t=1}^{1} t^{2} e^{-t} \frac{d t}{1 t} \\
& =\int_{t=1}^{1} t e^{-t} d t
\end{aligned}
$$

Since the limits are same, the value of the integral is zero.

$$
\int_{c} z e^{-z}=0 \quad \text { Cauchy's theorem if }
$$ verified.

Problems on Cauchy's integral formula working procedure:-
(1) we need to evaluate integrals of the form $\int_{c} \frac{f(z)}{z-a} d z ; \int_{c} \frac{f(z)}{(z-a)^{n+1}} d z$. over a given clofed curve c
(2) Firgtly we have to find out whether the point $z=a$ lie inside or outside the given curve C.
(3) If $Z=a$ is inside C then we use Cauchy's integral formula in the forms

$$
\int_{c} \frac{f(z)}{z-a} d z=2 \pi i f(a), \int_{c} \frac{f(z)}{(z-a)^{n+1}} d z=\frac{2 \pi i}{n!} f^{(n)}(a) .
$$

(4) If the point $z=a$ is outside c and Supposing that, $f(z)=\frac{f(z)}{z-a}$ (or) $\frac{f(z)}{(z-a)^{n+1}}$ is andytic
ingide and on the given curve C we can conclude that $\int_{c} f(z) d z=0$ by cauchy'? theorem

* In other wood if $z=a$ is outside C the value of integral is zero
problem \&
(1) Evaluate $\int_{0} \frac{e^{2}}{z+i \pi} d z$ over each of the following contours C :
(a) $\mid 21=2 \pi$
(b) $|z|=\pi / 2$
(c) $|z-1|=1$

Sol: $\int_{0} \frac{e^{z}}{2+i \pi} d z$
$\int_{0} \frac{e^{z}}{z-(-i \pi)} d z$ is of the form $\int_{c} \frac{f(z)}{z-a} d z$
here $f(z)=e^{2} \quad a=-i \pi$
(a) $121=2 \pi$ is
a circle with centre $(0,0)$ and radicy 2π
The point $z=a=-i \pi$ if the point $p(0,-\pi)$
dig within the circle $|z|=2 \pi$ we have C.I.F

$$
\left.\begin{array}{rl}
\int_{c} \frac{f(z)}{z-a} d z & =2 \pi i f(a) \\
\int_{c} \frac{e^{2}}{2+i \pi} d z & =2 \pi i f(-i \pi)=2 \pi i e^{-i} \pi \\
& =2 \pi i(\cos \pi-i \sin \pi) \\
(-i) & 0 \\
\int_{0} & \frac{e^{2}}{2+i \pi} d z
\end{array}\right)=-2 \pi i / f .
$$

(b) $|2|=\pi / 2$
is a circle with Centre origin and radix $\pi / 2$ The point $(0,-\pi)$ lit out side the $0^{l e}$ $|z|=\pi / 2$ and $\frac{e^{z}}{z+i \pi}$ analytic ingide and on the circle $|z|=\pi / 2$ By Cauchy's theorem

$$
\int_{C} \frac{e^{z}}{z+i \pi} d z=0
$$

(1) $|2-1|=1$ is a $o^{\text {le }}$ with centre at $z=a=1$ and radicy 1 . Thin is a $O^{\prime e}$ with centre $(1,0)$ \& radius
\qquad
\qquad
The point $P(0,-\pi)$ lig outfide the $O^{i e}$

$$
\therefore \text { by cadohy's theorem }
$$

$$
\int_{0} \frac{e^{z}}{2+i \pi} d z=0
$$

(2) Evaluate $\int_{0} \frac{d z}{z^{2}-4}$ over the following urvy
C.
(a) $C:|z|=1$
(b) $c:|z|=3$
(c) $0:|2+2|=1$

Soin': Congider $\frac{1}{z^{2}-H}=\frac{1}{z^{2}-z^{2}}=\frac{1}{(z-2)(z+2)}$
Repolving into partial fractions

$$
\begin{array}{r}
\frac{1}{(z-2)(z+2)}=\frac{A}{z-2}+\frac{B}{z+2} \\
1=A(z+2)+B(z-2)
\end{array}
$$

put $z=2: 1=H A+0$

$$
1=u A \Rightarrow A=1 / 4
$$

put

$$
\begin{gathered}
2=-2: 1=0+B(-4) \\
1=-4 B \\
B=-y / 4 / /
\end{gathered}
$$

$$
\begin{align*}
& \frac{1}{(z-2)(z+2)}=\frac{1}{H(z-z)}-\frac{1}{4(z+2)} \\
& \int \frac{1}{(z-z)(z+2)} d z=\frac{1}{4} \int \frac{1}{z-z} d z-\frac{1}{4} \int \frac{1}{z-(-2)} d z \tag{1}
\end{align*}
$$

(a) $c:|z|=1 ; \quad z=a=2$ and $z=a=-2$ dig outside the circle.
\therefore by Cauchy's theorem

$$
\int_{C} \frac{d z}{z^{2}-4}=0 \text { where } 0:|z|=1 /
$$

(b) $c:|z|=3 ; z=a=2$ and

$z=a=-2$ lies innide the circle w.K.T here $f(z)=1$
from eq (1)

$$
\begin{aligned}
& \int_{0} \frac{f(z)}{z-a} d z=2 \pi i f(a) \\
& \int_{c} \frac{f(z)}{z-2} d z=2 \pi i f(z)=2 \pi i(1)=2 \pi i \\
& \int_{c} \frac{f(z)}{z+2} d z=2 \pi i f(-2)=2 \pi i(1)=2 \pi i
\end{aligned}
$$

$$
\begin{gathered}
\int_{C} \frac{d z}{(z-2)(z+z)}=\frac{1}{4}(2 \pi i)-1 / 4(2 \pi i)=0 \\
\int_{c} \frac{d z}{z^{2}-u} d z=0
\end{gathered}
$$

\qquad
(6) $c:|z+2|=1$

Thin in a de with centre $(-2,0)$ and radicy 1

The point $(2,0)$ lie out side the $o^{l e}$ hence by Cauchy'? theorem

$$
\int \frac{d z}{z-2}=0
$$

The point $(-2,0)$ lin snide the $0^{\text {le }}$ by cauchy integral formula

$$
\int \frac{d z}{z+2}=\int \frac{d z}{z-(-2)}=2 \pi i f(-2)=2 \pi(1)=2 \pi i
$$

(1) becomy $\int \frac{d z}{z^{2}+4}=\frac{1}{4}(0)-\frac{1}{4}(2 \pi i)$

$$
=-\frac{\pi i}{2}
$$

(3) Evaluate $\int_{C} \frac{e^{2 z}}{(z+1)(z-z)} d z$ cohere C is the $o^{1 e}$

$$
|z|=3
$$

So1 $\int \frac{e^{2 z}}{(z+1)(z-z)} d z$

$$
\begin{align*}
& \text { Let } \frac{1}{(z+1)(z-2)}=\frac{A}{z+1}+\frac{B}{z-2} \tag{*}\\
& 1=A(z-2)+B(z+1) \tag{1}
\end{align*}
$$

put $z=2$ in (1)

$$
\begin{aligned}
1= & 0+B(3) \\
& 3 B=1 \Rightarrow B=1 / 3
\end{aligned}
$$

put $z=-1$ in (1)

$$
\begin{aligned}
1= & A(-1-2)+0 \\
1= & -3 A \\
& A=-1 / 3
\end{aligned}
$$

*) becomes

$$
\begin{aligned}
\frac{(z+1)(z-2)}{}=-\frac{1}{3} & \frac{1}{z+1}+\frac{1}{3} \frac{1}{z-2} \\
\frac{1}{(z+1)(z-2)} & =\frac{1}{3} \frac{1}{z-2}-\frac{1}{3(z+1)} \\
\int \frac{R^{2 z}}{(z+1)(z-2)} d z & =\frac{1}{3} \int \frac{e^{2 z}}{z-2} d z-\frac{1}{3} \int \frac{e^{2 z}}{z+1} d z
\end{aligned}
$$

$$
|z|=3 \text { is a } 0^{\prime e} \text { with centre }(0,0)
$$

$$
\text { \& radicy } 3
$$

The point $z=a=2$, and the point $z=a=-1$ both lis inside the ole. hance by cauchy integral formula, w.K.T $f(z)=e^{2 z}$

$$
\begin{aligned}
\int \frac{e^{2 z}}{z-2} d z & =2 \pi i f(2) \\
& =2 \pi i e^{2 \times 2} \\
& =2 \pi i e^{4}
\end{aligned}
$$

no need

$$
\int \frac{e^{2 z}}{z+1} d z=\int \frac{e^{2 z}}{z-(-1)} d z=2 \pi i f(-1)=2 \pi i e^{-2}=\frac{2 \pi i}{e^{2}}
$$

pat in (1)
(9) becomes

$$
\begin{aligned}
\int \frac{e^{2 z}}{(z+1)(z-2)} d z & =\frac{2 \pi i e^{4}}{3}-\frac{2 \pi i}{3 e^{2}} \\
& =\frac{2 \pi i}{3}\left(e^{4}-1 / e^{2}\right)
\end{aligned}
$$

(4) Evaluate $\int \frac{e^{3 z}}{z^{2}} d z$ over $c:|z|=1$

Sol: $\quad 121=1$ is a circle with the centre $(0,0)$ and radius 1. The point $z=0$ lis imide the circle $\&$ we have by cauchy integral formula in the generalized form

$$
\begin{aligned}
& \int \frac{f(z)}{(z-a)^{n+1}} d z=\frac{2 \pi i}{n!} f^{(n)}(a) \\
& c a l a \quad f(z)=e^{3 z}, a=0, n=1 \\
& \int \frac{e^{3 z}}{(z-0)^{1+1}} d z=\int \frac{e^{3 z}}{z^{2}} d z=\frac{2 \pi i}{1!} f^{1}(a) \\
& f^{\prime}(z)=3 e^{3 z} \quad f^{\prime}(0)=3 e^{0}=3, \quad a=0 \\
& f^{\prime}(0)
\end{aligned}
$$

(5) Evaluate $\int \frac{z^{2}+z+1}{(z-2)^{3}} d z$ over $c: \mid z 1=3$

Sain Time $|z|=3$ is a circle with centre $(0,0)$ \& radicy 3 . The point $z=2$ lies inside the $o^{\prime e} . \therefore$ by Cauchy's integral formula

$$
\int \frac{f(z)}{(z-a)^{n+1}} d z=\frac{2 \pi i}{n!} f^{(n)}(a)
$$

Taking $f(z)=z^{2}+z+1$

$$
\begin{gathered}
f^{\prime}(z)=2 z+1 \\
f^{\prime \prime}(z)=2 \\
\int \frac{z^{2}+z+1}{(z-2)^{3}} d z=\int \frac{z^{2}+z+1}{(z-2)_{n+1}^{2+1}} d z=\frac{2 \pi i}{2!} f^{(z)}(a) \\
z=a=2 \\
f^{\prime \prime}(z)=f^{\prime \prime}(2)=2 \\
\int \frac{z^{2}+z+1}{(z-z)^{3}} d z=\frac{2 \pi i}{2!} f^{\prime \prime}(2)=\frac{2 \pi}{2 \pi} \times \not 2=2 \pi i / /
\end{gathered}
$$

(6) Evaluate $\int \frac{e^{\pi 2}}{(22-i)^{3}} d z$ where c is $o^{\prime e}$

$$
|z|=1
$$

Son: $\quad 121=1$ is a $0^{\prime e}$ with centre $(0,0)$ \& radiancy is 1 .

$$
\int \frac{e^{\pi z}}{(2 z-i)^{3}} d z=\int \frac{e^{\pi z}}{(2(z-i / 2))^{2+1}}>\text { compress in term of }(z-a)
$$

The point $z=a=i / 2$ ie $(0, y / 1 / 2)$ indie JAY
by cauchy integral Generalized formula

$$
\begin{aligned}
& \int_{a} \frac{f(z)}{(z-a)^{n+1}} d z=\int_{2^{3}} \frac{e^{\pi z}}{(z-1 / 2)^{2+1}} d z=\frac{1 / 22 \pi i}{82!} f^{\prime \prime}(a) \\
& f(z)=e^{\pi / 2} \\
& f^{\prime}(z)=\pi e^{\pi z} \\
& f^{\prime \prime}(z)=\pi^{2} e^{\pi 2} \\
& z=a=-i / 2 \\
& f^{\prime \prime}(-i / z)=\pi^{2} e^{-i \pi / 2}
\end{aligned}
$$

$$
\text { (2) } \Rightarrow \begin{aligned}
\frac{1}{8} \int \frac{e^{\pi 2}}{(2-i / 2)^{3}} & =\frac{1 \pi}{8} \frac{2 \pi i}{2!} f^{\prime \prime}(a) \\
& =\frac{1}{8} i^{\prime \prime}(-i / 2) \\
& =\frac{1}{8} \pi i \pi^{2} e^{-i \pi / 2} \\
& =\frac{1}{8} \pi^{3} e^{-i \pi / 2} \\
& =\frac{1}{8} i \pi^{3}(\cos \pi / 2-i \sin \pi / 2) \\
& =\frac{1}{8} i^{3} \pi^{3}(0-i(1)) \\
& =\frac{1}{8} x-i^{4} \pi^{3} \\
& =-\pi^{3} / 8
\end{aligned}
$$

(7) Evaluate $\int_{c} \frac{e^{2 z}}{(z+1)^{2}(2-2)} d z$ where $c: / 2 /=3$

- *

Son we shall first hesolve $\frac{1}{(2+1)^{2}(2-2)}$ in to partial fractions

$$
\begin{aligned}
& \frac{1}{(z+1)^{2}(2-2)}=\frac{A}{2+1}+\frac{B}{(z+1)^{2}}+\frac{C}{z-2} \\
& 1=A(z+1)+B(2-2)+C(2+1)^{2} \\
& \text { put } 2=-1 \\
& 1=0+B(-3)+0 \\
& \\
& \quad-3 B=1 \Rightarrow B=-1 / 3
\end{aligned}
$$

put $Z=2$

$$
\begin{aligned}
& 1=A(0)+0+C(3)^{2} \\
& 1=9 C \Rightarrow c=1 / q \\
& \text { put } z=0
\end{aligned}
$$

$$
1=A(1)(-2)+B(-2)+C(1)
$$

$$
1=-2 A+2 / 6+1 / 9
$$

$$
2 A=2 / \frac{1}{3}+4 / 9=1
$$

$$
\frac{3(9 \cdot 6}{32}
$$

$$
2 A=\frac{1}{9} \times 19+\frac{1}{9} \times 19-19
$$

$$
=\frac{3+2-18}{18}
$$

$$
\begin{aligned}
& y=+2 A+2 / 3+1 / 9 \\
& 2 A=2 / 3+1 / 9-1 \\
& =\frac{6+1-9}{9} \\
& 2^{2} A=-2 / 9 \\
& A=-1 / 9 \\
& \frac{1}{(2+1)^{2}(2-2)}=-\frac{1}{9} \times \frac{1}{2+1}+\frac{1}{3} \times \frac{1}{(2+1)^{2}}+\frac{1}{9} \times \frac{1}{2-2} \\
& x^{14} e^{2 z} \text { \& Integrate w.or. to } 2 \text { over } c \\
& \begin{aligned}
\int \frac{e^{2 z}}{(z+1)^{2}(z-2)} d z & =-\frac{1}{9} \int \frac{e^{2 z}}{z+1} d z-\frac{1}{3} \int \frac{e^{2 z}}{(z+1)^{2}} d z+\frac{1}{9} \int \frac{e^{2 z}}{z-2} d z \\
I & =I_{1}+I_{2}+I_{3}
\end{aligned} \\
& I_{1}=-\frac{1}{9} \int \frac{e^{2 z}}{z+1} d z=\frac{-1}{9} \int \frac{e^{2 z}}{z-(-1)} d z \\
& \text { The point } z=a=-1 \text { ide }(-1,0) \\
& \text { lies inside the circle } \therefore \int_{a} \frac{f(z)}{z-a} d z=2 \pi i f(a) \\
& \text { W.K.T } f(2)=e^{22}, \quad f(1 \\
& f(-1)=e^{-2} \\
& \begin{aligned}
-\frac{1}{9} \int \frac{e^{2 z}}{z+1} & =2 \pi i f(-1) \times \frac{-1}{9} \\
& =2 \pi i p^{-2} \times-19
\end{aligned} \\
& =2 m i p^{-2} \times \frac{-1}{9} \\
& =-\frac{2 \pi i e^{-2}}{9}
\end{aligned}
$$

$$
\begin{aligned}
& I_{2}=\frac{1}{3} \int \frac{e^{2 z}}{(z+1)^{2}} d z \\
& \Rightarrow \quad \int \frac{f(z)}{(z-a)^{n+1}} d z=\frac{2 \pi i f^{(n)}(a)}{n!} \\
& -\frac{1}{3} \int \frac{e^{2 z}}{(z-(-1))^{1+1}} d z=\frac{-1}{3} \times \frac{2 \pi i f^{\prime}(a)}{1!} \\
& f(z)=e^{2 z} \\
& f^{\prime}(z)=2 e^{2 z} \\
& z=a=-1 \\
& f^{\prime}(-1)=2 e^{-2} \\
& \frac{-1}{3} \int \frac{e^{2 z}}{(z+1)^{2}} d z=\frac{-1}{3} \times 2 \pi i \times 2 e^{-2} \\
& =\frac{-4 \pi i e^{-2}}{3} \\
& \frac{T_{3}}{3}=\frac{1}{9} \int \frac{e^{2 z}}{z-2} d z \\
& z=a=2 \text { lig ingide the } 0^{\text {le }} \\
& \int \frac{f(z)}{z-a} d z=2 \pi i f(a) \\
& =\frac{1}{9} \int \frac{e^{2 z}}{z-2} d z=\frac{1}{9} \times 2 \pi i f(2) \\
& \text { w.K.T } f(z)=e^{2 z} \\
& f(2)=e^{2 \times 2}=e^{4} \\
& I_{3}=\frac{1}{9} \int \frac{e^{2 z}}{2-2} d z=\frac{1}{9} \times 2 \pi i \times e^{4}
\end{aligned}
$$

Now (*) \Rightarrow
\qquad

$$
\begin{aligned}
& I=\frac{-2 \pi i e^{-2}}{9}-\frac{4 \pi i e^{-2}}{3}+\frac{2 \pi i}{9} e^{4} \\
& I=\frac{2 \pi i}{9}\left(\frac{-1}{9 e^{2}}-\frac{2}{3 e^{2}}+\frac{e^{4}}{9}\right)
\end{aligned}
$$

module-03
Probability distributions
Let E be the event then the probability of an event ' F ' is "It defined as

$$
P(E)=\frac{\text { No\% of favourable coles }}{N \% \text { of possible cases }}
$$

Random Variable: in a random experiment if a real variable is associated with every outcome then it is called random Variable.
exc: while tossing a coin, suppose that the value is associated for the outcome 'head' and O for the outcome 'tail'. We have the sample space $\mathcal{S}=\{H, T\}$ and if X is the random variable then $X(H)=1$ and $x(T)=0$

Range of $x=\{0,1\}$
excl): Suppose a coin is tossed twice we shall associate two different random variably x, y as follows.
we have sample space

$$
B=\{H H, H T, T H, T T\}
$$

$X=$ No\%. of heady in the oatcomy The association of elements in S to x of follows

out come	$H H$	HT	TH	
Random variable X	2	1	1	0

Range of $X=\{0,1,2\}$
Suppose $Y=$ Now of tails in the outcome

Outcome	HA	HT	TH	TI
Random Variable x	0	1	1	2

Range of $y=\{0,1,2\}$
Type of Random Variable:-
(1) Discrete random Variable
(2) Contineous random Variable
(1) Discrete random Variable: If a random Variable take finite no. of values (or) countably infinite no . of value then it is called discrete random Variable
$e x$: (1) Tossing a coin and observing the outcome
(2) Tossing coins and observing the number of heads turning up.
(3) Throwing a die, \& observing the numbers on the face.
(2) Contineous random Variable:-

If a random variable takes infinite number of value then it is called Continuous random variable ex (1): weight of artides
(2) Length of nails produced by machine Probability function:-
If for each value of x_{i} of a discrete random variable ' x ', we assign a real number $p\left(x_{i}\right) \quad \geqslant$;
(i) $p\left(x_{i}\right) \geqslant 0$
(ii) $\sum p\left(x_{i}\right)=1$
mean and variance for general frequency distribution

$$
\begin{aligned}
& (\text { mean }) \bar{x}=\frac{\sum f_{i} x_{i}}{\sum f_{i}} \\
& \text { variance }\left(\sigma^{2}\right)=\frac{\sum\left(x_{i}-\bar{x}\right)^{2} f_{i}}{\sum f_{i}}
\end{aligned}
$$

Mean and Variance for discrete Probability distribution:-

$$
\begin{aligned}
& \operatorname{mean}(\mu)=\sum x_{i} p\left(x_{i}\right) \\
& \operatorname{Variance}(v)=\sum\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right)
\end{aligned}
$$

(or)

$$
\text { variance }(v)=\sum x_{i}^{2} p\left(x_{i}\right)-\mu^{2}
$$

$$
\text { Standard deviation }(\sigma)=\sqrt{\text { variance }}
$$

Note : $p+q=1$
where $D \rightarrow$ probability of Success
i \rightarrow probability of failure
NOTE (2):

$$
\begin{aligned}
& P(A)+P(\bar{A})=1 \\
& P(A)=1-P(\bar{A})
\end{aligned}
$$

cohere \bar{A} is the complement of A.
problems
(1)
S.T the following distribution represents a discrete probability distribution, find the mean and Variance

x	10	20	30	40
$p(x)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Sol: To prove the discrete probability distribution we have to verify the two conditions

$$
\begin{aligned}
& \text { (1) } P(x) \geqslant 0 \\
& \text { (2) } \sum P(x)=1
\end{aligned}
$$

(i) $P(x) \geq 0$, firgt Condition is satisfied
(ii)

$$
\begin{gathered}
\frac{1}{8}+\frac{3}{8}+\frac{3}{8}+\frac{1}{8}=\frac{1+3+3+1}{8}=\frac{8}{8} \\
\therefore \Sigma P(x)=1
\end{gathered}
$$

we observed that both the Conditions are satisfied
\therefore given distribution reprefents a discrete probability distribution

$$
\begin{aligned}
\text { mean } & (\mu)=\sum x_{i} P\left(x_{i}\right) \\
& =10(1 / 8)+20(3 / 8)+30(3 / 8)+40(1 / 8) \\
& =\frac{10}{8}+\frac{60}{8}+\frac{90}{8}+\frac{40}{8} \\
& =\frac{200}{8} \\
\mu & =25
\end{aligned}
$$

$$
\begin{aligned}
& \text { Variance }(v)=\sum\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right) \\
&=(10-25)^{2} \frac{1}{8}+(20-25)^{2} \frac{3}{8}+(30-25)^{2} \frac{3}{8}+(40-25)^{2} \frac{1}{8} \\
&=\frac{225}{8}+25 \times \frac{3}{8}+25 \times \frac{3}{8}+225 \times \frac{1}{8} \\
&=\frac{225+75+75+225}{8} \\
&=\frac{600}{8} \\
&=75 \\
& \text { SOD }(\sigma)=\sqrt{V} \\
&=\sqrt{75}
\end{aligned}
$$

(2) Find the value of k such that the following distribution reprelents a finite probability distribution and also find $P(x \leq 1), P(x>1)$ and $P(-1<x \leq 2)$

x	-3	-2	-1	0	1	2	3
$p(x)$	K	$2 K$	$3 K$	$4 K$	$3 K$	$2 K$	K

Sol: we must have (i) $P(x) \geqslant 0$
(ii) $\Sigma P(x)=1$

The fimgt Condition is satisfied if $k \geqslant 0$, we have to find $k \ni ; \sum P(x)=1$

$$
\begin{aligned}
& \sum P(x)=k+2 k+3 k+4 k+3 k+2 k+k=16 k \\
& \Rightarrow P(x)=1 \\
& \Rightarrow \quad 16 k=1 \\
& k=\frac{1}{16}, \\
&25)^{2} \frac{1}{8} \quad K=\frac{1}{16}>0
\end{aligned}
$$

The diyorete/finite probability

distribution is							
x	-3	-2	-1	0	1	2	3
$p(x)$	$\frac{1}{16}$	$\frac{2}{16}$	$\frac{3}{16}$	$\frac{4}{16}$	$\frac{3}{16}$	$\frac{2}{16}$	$\frac{1}{16}$

mean $\mu=\sum x_{i} p\left(x_{i}\right)$

$$
\begin{aligned}
&= \frac{1}{16}(-3)+\frac{2}{16}(-2)+\frac{3}{16}(-1)+\frac{4}{16}(0)+ \\
& \frac{3}{16}(1)+\frac{2}{16}(2)+\frac{1}{16}(3) \\
&= \frac{1}{16}(-\beta-\mu-\beta+0+\beta+\mu+\beta) \\
&= \frac{1}{16}(0) \\
& \mu=
\end{aligned}
$$

Variance $V=\sum\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right)$

$$
\begin{aligned}
V= & (-3-0)^{2} \frac{1}{16}+(-2-0)^{2} \frac{2}{16}+(-1-0)^{2} \frac{3}{16} \\
& +(0-0)^{2} \frac{4}{16}+(1-0)^{2} \frac{3}{16}+(2-0)^{2} \frac{2}{16} \\
& +(3-0)^{2} \frac{1}{16} \\
= & 9 \times \frac{1}{16}+4 \times \frac{2}{16}+1 \times \frac{3}{16}+\frac{0 \times 4}{16}+1 \times \frac{3}{16} \\
& +4 \times \frac{2}{16}+9 \times \frac{1}{16} \\
= & \frac{1}{16}(9+8+3+0+3+8+9) \\
= & \frac{1}{16}(40) \\
V= & \frac{5}{2}
\end{aligned}
$$

Thy $k=\frac{1}{16}, \quad \mu=0, \quad v=\frac{5}{2}, \quad \sigma=\sqrt{5} / 2$ now we have to find $P(x) \leq 1$

$$
\begin{aligned}
P(x \leq 1) & =P(-3)+P(-2)+P(-1)+P(0)+P(1) \\
& =\frac{1}{16}+\frac{2}{16}+\frac{3}{16}+\frac{4}{16}+\frac{3}{16} \\
& =\frac{1}{16}(1+2+3+4+3) \\
P(x \leq 1) & =\frac{13}{16}
\end{aligned}
$$

(i)

$$
\begin{aligned}
P(x>1) & =P(2)+P(3) \\
& =\frac{2}{16}+\frac{1}{16} \\
& =\frac{1}{16}(2+1) \\
& =\frac{3}{16}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
P(-1<x \leq 2) & =P(0)+P(1)+P(2) \\
& =\frac{4}{16}+\frac{3}{16}+\frac{2}{16} \\
& =\frac{4+3+2}{16} \\
P(-1<x \leq 2) & =\frac{9}{16}
\end{aligned}
$$

(3) The probability distribution function of a variate x is given by the following table

x	0	1	2	3	4	5	6
$p(x)$	k	$3 k$	$5 k$	$7 k$	$9 K$	$11 K$	$13 K$

Son: The probability distribution is valid if (i) $P(x) \geqslant 0$ and

$$
\text { (ii) } \Sigma p(x)=1
$$

hence we mast have $k \geqslant 0$ and

$$
\begin{gathered}
\sum p(x)=1 \\
k+3 k+5 k+7 k+9 k+11 k+13 k=1 \\
49 k=1 \\
k=\frac{1}{49}
\end{gathered}
$$

probability distribution function is valid for $K=\frac{1}{49}$
Now we have to find $p(x \geqslant 5)$ \& $p(3<x \leqslant 6)$

$$
\begin{aligned}
P(x \geqslant 6) & =P(5)+P(6) \\
& =11 K+13 k \\
& =24 k \\
& =24 \times \frac{1}{49} \\
& =\frac{24}{49}
\end{aligned}
$$

$$
\begin{aligned}
P(3<x \leq 6) & =P(4)+P(5)+P(6) \\
& =9 k+11 k+13 k \\
& =33 k \\
& =33 \times \frac{1}{49} \\
P(3<x \leq 6) & =\frac{33}{49}
\end{aligned}
$$

(4) The probability distribution of a finite random variable x is given - by the following table

x	-2	-1	0	1	2	3
$P(x)$	0.1	K	0.2	$2 k$	0.3	K
Find the value of K, mean \& variance						

Loin: we myst have $P(x) \geqslant 0$ and $\sum P(x)=1$ for a probability distribution we have to find K;

$$
\begin{gathered}
\sum P(x)=1 \\
0.1+K+0.2+2 K+0.3+K=1 \\
4 K+0.6=1
\end{gathered}
$$

$$
\begin{aligned}
H K & =1-0.6 \\
H K & =0.4 \\
K & =0.1 /
\end{aligned}
$$

The probability distribution of a finite random Variable x is

x	-2	-1	0	1	2	3
$P(x)$	0.1	0.1	0.2	0.2	0.3	0.1

mean $\mu=\sum x_{i} p\left(x_{i}\right)$

$$
\begin{aligned}
= & -2(0.1)+(-1)(0.1)+0(0.2)+1(0.2)+ \\
& 2(0.3)+3(0.1) \\
\mu= & -0.2-0.1+0+0 / 2+0.6+0.3
\end{aligned}
$$

Variance $(v)=\sum\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right)$

$$
\begin{aligned}
= & (-2-0.8)^{2}(0.1)+(-1-0.8)^{2}(0.1)+ \\
& (0-0.8)^{2}(0.2)+(1-0.8)^{2}(0.2)+ \\
& (2-0.8)^{2}(0.3)+(3-0.8)^{2}(0.1) \\
= & (-2.8)^{2}(0.1)+(-1.8)^{2}(0.1)+(-0.8)^{2}(0.2) \\
& +(0.2)^{2}(0.2)+(1.2)^{2}(0.3)+(2.2)^{2}(0.1) \\
= & 7.84 \times 0.1+3.24 \times 0.1+0.64 \times 0.2 \\
& +0.04 \times 0.2+1.44 \times 0.2+4.84 \times 0.1 \\
= & 0.784+.0 .324+0.128+0.008+ \\
& 0.432+0.484 \\
V= & 2.16
\end{aligned}
$$

(5) A random Variable x hay the following probability function for varioy value of x

of x	0	1	2	3	4	5	6	7
$p(x)$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

(i) Find K
(iii) Evaluate $P(x<6), P(x \geqslant 6)$ and

$$
P(3<x \leq 6)
$$

also find the probability distribution and distribution function of x.

Sol: TO find the probability distribution we myst have $P(x) \geqslant 0$ and $\sum P(x)=1$ The first condition is satisfied for $k \geqslant 0$, we have to find k;

$$
\begin{gathered}
\sum p(x)=1 \\
0+k+2 k+2 k+3 k+k^{2}+2 k^{2}+7 k^{2}+k=1 \\
10 k^{2}+9 k-1=0 \\
10 k^{2}+10 k-k-1=0 \\
10 k(k+1)-1(k+1)=0 \\
(k+1)(10 k+1)=0 \\
k+1=0 \text { (0) } 10 k-1=0 \\
k=-1 \text { (07) } 10 k=1 \\
k=\frac{1}{10}
\end{gathered}
$$

If $k=-1$, firgt condition fails so $K \neq-1$

$$
\begin{aligned}
\therefore \text { Take } k & =\frac{1}{10}=0.1 \\
k & =0.1
\end{aligned}
$$

hence table (or) probability dysribution is

x	0	1	2	3	4	5	6	7
$p(x)$	0	0.1	0.2	0.2	0.3	0.01	0.02	0.17

(ii) $p(x<6)$

$$
\begin{aligned}
& =P(0)+P(1)+P(2)+P(3)+P(u)+P(5) \\
& =0+0.1+0.2+0.2+0.3+0.01
\end{aligned}
$$

$$
\begin{aligned}
& p(x<6)=0.81 / \\
& \begin{aligned}
p(x \geqslant 6) & =p(6)+p(7) \\
& =0.02+0.17 \\
& =0.19
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
p(3<x \leq 6) & =p(4)+p(5)+p(6) \\
& =0.3+0.01+0.02 \\
& =0.33
\end{aligned}
$$

distribution function $\mathscr{x} x$ is

x	0	1	2	3	4	5
$f(x)$	0	$0+0.1$	$0.1+0.2$	$0.3+0.2$	$0.5+0.3$	$0.8+0.0$
	$=0.1$	$=0.3$	$=0.5$	$=0.8$	$=0.81$	
6	7					

(6) A random variable x take the values $-3,-2,-1,0,1,2,3$ such that $p(x=0)=p(x<0)$ and $p(x=-3)=p(x=-2)=p(x=-1)=p(x=1)=$ $P(x=2)=p(x=3)$. Find the probability distribution.

SOl ${ }^{\text {o }}$

x	-3	-2	-1	0	1	2	3
$P(x)$	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}

By data $p(x=0)=p(x<0)$

$$
\begin{align*}
\Rightarrow P(x=0) & =P(x=-1)+P(x=-2)+P(x=-3) \\
P_{4} & =P_{3}+P_{2}+P_{1} \tag{1}
\end{align*}
$$

By data

$$
\begin{equation*}
P_{1}=P_{2}=P_{3}=P_{5}=P_{6}=P_{7} \tag{2}
\end{equation*}
$$

We most have $\sum P(x)=1$

$$
\begin{equation*}
P_{1}+P_{2}+P_{3}+P_{4}+P_{5}+P_{6}+P_{7}=1 \tag{3}
\end{equation*}
$$

use (2) in (3)

$$
\begin{array}{r}
P_{1}+P_{1}+P_{1}+P_{H}+P_{1}+P_{1}+P_{1}=1 \\
6 P_{1}+P_{H}=1 \tag{4}
\end{array}
$$

use (2) in (1)
eq (1) become) $P_{4}=P_{1}+P_{1}+P_{1}$

$$
P_{4}=3 P_{1}
$$

eq"(4) become 8

$$
\begin{aligned}
6 P_{1}+3 P_{1} & =1 \\
9 P_{1} & =1 \\
P_{1} & =\frac{1}{9}
\end{aligned}
$$

hence $P_{H}=3 P_{1}=3 \times \frac{1}{9}=\frac{1}{3}$

$$
\therefore P_{H}=\frac{1}{3}
$$

Thy probability distribution is

x	-3	-2	-1	0	1	2	3
$p(x)$	$1 / 9$	$1 / 9$	$1 / 9$	$1 / 3$	$1 / 9$	$1 / 9$	$1 / 9$

(7) If the random variable x take the values $1,2,3,4$ such that $\& P(x=1)=3 P(x=2)=$ $p(x=3)=5 p(x=4)$, find the probability distribution function of x.

Sol in

x	1	2	3	4
$P(x)$	P_{1}	p_{2}	P_{3}	P_{4}

$$
\begin{equation*}
2 P_{1}=3 P_{2}=P_{3}=5 P_{4} \tag{1}
\end{equation*}
$$

alyo we mayt have $\sum P(x)=1$

$$
\begin{equation*}
P_{1}+P_{2}+P_{3}+P_{4}=1 \tag{2}
\end{equation*}
$$

form

$$
\begin{array}{rlr}
2 P_{1}=3 P_{2}, & 2 P_{1}=P_{3}, & 2 P_{1}=5 P_{4} \\
P_{2}=\frac{2}{3} P_{1}, & P_{3}=2 P_{1}, & P_{4}=\frac{2}{5} P_{1}
\end{array}
$$

hence (2) become\&

$$
\begin{aligned}
& P_{1}+\frac{2}{3} P_{1}+2 P_{1}+\frac{2}{5} P_{1}=1 \\
& \alpha \mathrm{~cm} \text { is } 15 \\
& \frac{15 p_{1}+10 p_{1}+20 p_{1}+6 p_{1}}{15}=1 \\
& \frac{161}{15} P_{1}=1 \Rightarrow P_{1}=\frac{15}{61}
\end{aligned}
$$

hence we g et $P_{2}=\frac{2}{3} \times P_{1}=\frac{2}{3} \times \frac{15}{61}=\frac{30^{10}}{3 \times 61}=\frac{10}{61}$

$$
\begin{aligned}
& P_{3}=2 P_{1}=\frac{2 \times 15}{61}=\frac{30}{61 / 1} \\
& P_{4}=\frac{2}{5} P_{1}=\frac{2}{5} \times \frac{15}{61}=\frac{6}{61 / /}
\end{aligned}
$$

The paobability digmibution function of X

x	1	2	3	4
$P(x)$	$15 / 61$	$10 / 61$	$30 / 61$	$6 / 61$
$f(x)$	$15 / 61$	$15 / 61+10 / 61=25$	$25 / 61+30 / 61=\frac{55}{61}$	$55 / 61+6 / 61=61 / 61=1$

(8) If x is a discrete random variable having $p(x)$ defined of follow/

$$
P(x)= \begin{cases}x / 15, & \text { if } 1 \leq x \leq 5 \\ 0 & \text { if } x>5\end{cases}
$$

Q.T $P(x)$ y a probability function and find $P(x=1$ or 2$)$

Qeni. The probability distribution is as follows

x	1	2	3	4	5	$6,7,8 \ldots$
$p(x)$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{3}{15}$	$\frac{4}{15}$	$\frac{5}{15}$	0

we have (1) $p(x) \geqslant 0$
(2) $\sum P(x)=1$
$\therefore P(x)$ is probability function
Now $P(x=1$ or 2$)=P(x=1)+P(x=2)$

$$
\begin{aligned}
& =\frac{1}{15}+\frac{2}{15} \\
& =\frac{3}{15} \\
& =\frac{1}{5}
\end{aligned}
$$

Binomial distribution
If p is the probability of success and q is the probability of failure, the probability of x success out of n trials is given by $p(x)=n_{c} p^{x} q^{n-x}$

We form the following probabi - lite distribution of $(x, p(x))$ where

$$
\begin{aligned}
& x=0,1,2 \cdots n \\
& x \quad 0 \quad 1 \\
& p(x) \quad q^{n} \quad n c q^{n-1} p \text { nc } q^{n-2} p^{2} \cdots p^{n} \\
&
\end{aligned}
$$

It may be observed that the value of $p(x)$ for different values $x=0,1,2 \ldots n$ are the succesive terms in the binomial expansion of $(q+p)^{n}$ and accordingly this distribution is called binomial distribution.

$$
\begin{aligned}
& \text { Called binomial distribution. } \\
& \begin{aligned}
\sum p(x) & =q^{n}+n_{c} q^{n-1} p+n_{c} q^{n-2} p^{2}+\cdots+p^{n} \\
& =(q+p)^{n} \\
& =1 \\
& =1
\end{aligned}
\end{aligned}
$$

hence $=p(x)$ is a probability function
Mean \& standard deviation of Binomial distribution:-
(a)

Derive Mean ε \&id of Binomial digtribution
\qquad

$$
\mu=n P
$$

Variance $(V)=\sum_{x=0}^{n} x^{2} p(x)-\mu^{2}$
Now, $\sum_{x=0}^{n} x^{2} p(x)=\sum_{x=0}^{n}[x(x-1)+x] p(x)$

$$
=\sum_{x=0}^{n} x(x-1) p(x)+x p(x)
$$

$$
\begin{aligned}
& \text { Mean, } M=\sum_{x=0}^{n} x p(x) \\
& =\sum_{x=0}^{n} x n_{x} p^{x} q^{n-x} \\
& \text { w. K. T } \\
& n_{r}=\frac{n!}{(n-n)!\gamma!} \\
& =\sum_{x=0}^{n} x \frac{n!}{(n-x)!x!} \rho^{x} q^{n-x} \\
& =\sum_{x=0}^{n} \frac{x n(n-1)!}{(\not x)(x-1)!(n-x)!} p^{x} q^{n-x} \\
& =\sum_{x=0}^{n} \frac{n(n-1)!}{(x-1)!(n-x)!} p \cdot p^{x-1} q^{n-x} \\
& =n p \sum_{x=1}^{n} \frac{(n-1)!\quad p^{x-1} q^{(n-1)-(x-1)}}{(x-1)![(n-1)-(x-1)]!} \\
& \forall V_{n}=n p \sum_{x=1}^{n}(n-1) c_{x-1} p^{x-1} q^{(n-1)-(x-1)} \\
& \text { n. } n \text { ? }=n p(q+p)^{n-1} \\
& =n p(1)
\end{aligned}
$$

$$
=\sum_{x=0}^{n} \frac{n(n-1)(n-2)!}{(x-2)!(n-x)!} p^{2} p^{x-2} q^{n-x}+n p
$$

$$
=n(n-1) p^{2} \sum_{x=2}^{n} \frac{(n-2)!}{(x-2)![(n-2)-(x-2)]!} p^{x-2} \cdot q^{(n-2)-(x-2)}+n p
$$

$$
=n(n-1) p^{2} \sum_{x=2}^{60}(n-2) C_{(x-2)} p^{x-2} q^{(n-2)-(x-2)}+n p
$$

$$
\begin{aligned}
\sum x^{2} p(x) & =n(n-1) p^{2}+n p \\
& =\left(n^{2}-n\right) p^{2}+n p \\
\sum x^{2} p(x) & =n^{2} p^{2}-n p^{2}+n p
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{x=0}^{n} x(x-1) P(x)+\sum_{x=0}^{n} x p(x) \\
& =\sum_{x=0}^{n} x(x-1) n c_{x} p^{x} q^{n-x}+n p \\
& =\sum_{x=0}^{n} x \frac{x(x-1) n!}{(n-x)!x!} p^{x} q^{n-x}+n p \\
& =\sum_{x=0}^{n} \frac{x(x-1) n(n-1)(n-2)!}{(n-x)!x(x-1)[x-2)!} p^{2} \cdot p^{x-2} q-x
\end{aligned}
$$

(*) becomes
\therefore variance $V=\left(n^{2} p^{2}-n p^{2}+n p\right)-(n p)^{2}$

$$
\text { variance }(v)=n p q
$$

$$
8.0(\sigma)=\sqrt{v}=\sqrt{n p q}
$$

$$
\left.\begin{aligned}
& =n^{2} p^{2}-n p^{2}+n p-n^{2} R^{2} \\
& =-n p^{2}+n p^{2} \\
& =n p(-p+1) \\
& =n p(1-p) \\
& =n p q \\
& v=n p q
\end{aligned} \right\rvert\, \begin{gathered}
\\
=n \cdot k \cdot T \\
\end{gathered}
$$

Thy for binomial distribution $\mu=n p, \quad$ variance $(v)=n p q$

$$
S \cdot D(\sigma)=\sqrt{n p q}
$$

$(n-2)-(x-2)$
Problems
$+n p$
(1) Find the binomial distribution which has mean 2 and variance $4 / 3$

Sol: $\omega \cdot k \cdot T \quad$ mean $(\mu)=n P$
Given $\mu=n p=2$

$$
\therefore \quad P P \pm 2
$$

Variance $(v)=n p q=4 / 3$

$$
\begin{aligned}
n p q & =4 / 3 \\
2 q & =4 / 3 \\
q & =2 / 3
\end{aligned}
$$

$$
p+q=1 \Rightarrow p=1-q=1-2 / 3=\frac{3-2}{3}=1 / 3
$$

$p=1 / 3, q=2 / 3$
$\begin{aligned} n P & =2 \\ n=2 / p & =-2 / 1 / 3\end{aligned}$
$n=6$

- Binomial probability distribution $p(x)=n_{c_{x}} p^{x} q^{n-x}$

$$
p(x)=6_{c}\left(\frac{1}{3}\right)^{x}\left(\frac{2}{3}\right)^{6-x}
$$

The dintribution of probability is

follows

(2) when a coin is tossed H times

Find the probability of getting
(1) exactly one head
(2) atmost 3 heads
(3) atleost 2 heads

SOM: $P=P(H)=\frac{1}{2}$
w. K.T $\quad p+q=1$

$$
\begin{aligned}
q & =1-p \\
& =1-1 / 2 \\
& =1 / 2 \\
p & =0.5
\end{aligned}
$$

$$
\left.\begin{array}{l}
n=4 \\
w \cdot k \cdot T \\
P(x)
\end{array}=n c_{x} p^{x} q^{n-x}+1 c_{x}(0.5)^{x}(0.5)^{4-x}\right)
$$

(i) $p($ exactly one head $)=P(x=1)=u_{c}(0.5)^{\prime}(0.5)^{4.1}$

$$
\begin{aligned}
p(x) & =n c_{x} p^{x} q^{n-x} \\
& =H(0.5)(0.5)^{3} \\
& =0.25
\end{aligned}
$$

$$
\begin{aligned}
& =0.375 \\
& =0.687
\end{aligned}
$$

(3) The pro
led by

$$
1 / 10 \text {. If }
$$

what is
(ii) Ale
(iii) None
(ii)

$$
\begin{aligned}
& P(\text { at most } 3 \text { head } 8)=P(x \leq 3) \\
& P(x)=n_{x} P^{x} q^{n-x} \\
& =P(x=0)+P(x=1)+P(x=2)+P(x, 3) \\
& =4 c_{0}(0.5)^{0}(0.5)^{4-0}+4 c_{1}(0.5)^{1}(0.5)^{4-1} \\
& \quad+4 c_{2}(0.5)^{2}(0.5)^{4-2}+4 c_{3}(0.5)^{3}(0.5)^{4-3} \\
& \\
& \quad=(1)(1)(0.5)^{4}+4(0.5)(0.5)^{3}+6(0.5)^{2}(0.5)^{2}+4(0.5)(0.5) \\
& =0.0625+0.25+0.375+0.25
\end{aligned}
$$

$$
=0.9375 /
$$

(iii) $P($ at least 2 heads $)=P(x \geqslant 2)$

$$
\begin{aligned}
& =p(x=2)+p(x=3)+p(x=4) \\
& \quad p(x)=n c_{x} p^{x} q_{4-2}^{n-x}+u c_{3}(0.5)^{3}(0.5)+u c_{4}(0.5)^{u}(0.5)^{u-4} \\
& =C_{2}(0.5)^{2}(0.5)^{4}+4(0.5)^{3}(0.5)+(1)(0.5)^{4}(0.5)^{0} \\
& =6(0.5)^{2}(0.5)^{2}+4
\end{aligned}
$$

$$
\begin{aligned}
& =0.375+0.25+0.0625 \\
& =0.6875
\end{aligned}
$$

(3) The probability that a pen manufactun led by a factory be defective is 1/10. If 12 such pens are manufactured what y the probability that
(1) Exactly two are defective
(ii) Atlegt two are defective
(iii) None of them are defective

Sol: probability of a defective pen is $\quad p=\frac{1}{10}=0.1$
probability of non defective pen
-3
$(0.5)(0.5)$
is $p+q=1$

$$
\begin{aligned}
& q=1-p \\
& q=1-0.1 \\
& q=0.9
\end{aligned}
$$

$n=12$, we have $p(x)=n_{c} p^{x} q^{n-x}$

$$
P(x)=12 c_{x}(0.1)^{x}(0.9)^{x-12 x}
$$

(i)
$P(e x a c k l y$ are defective 2 ar

$$
\begin{aligned}
& =P(x=2) \\
& =12 c_{\theta}(0.1)^{2}(0.9)^{12-2} \\
& =66(0.01)(0.9)^{10} \\
& =0.2301
\end{aligned}
$$

(ii) $p($ atleat two are defective $)=p(x \geqslant 2)$

$$
\begin{aligned}
& =1-P(x<2) \\
& =1-[P(x=0)+P(x=1)] \\
& =1-\left[12 C_{0}(0.1)^{0}(0.9)^{12-0}+12 c(0.1)^{1}(0.9)\right. \\
& =1-\left[(1)(1)(0.9)^{12}+12(0.1)(0.9)^{11}\right] \\
& =1-0.659 \\
& =0.3409
\end{aligned}
$$

(iii) $P($ None of them are defective $)=P(x=0)$

$$
\begin{aligned}
& ={ }^{12} C_{0}(0.1)^{0}(0.9)^{12-0} \\
& =(1)(1)(0.9)^{12} \\
& =0.2824
\end{aligned}
$$

(4) In a conjigment of electric lamps 5% are defective. If a random sample of 8 lamps are inspected what is the probability that one or more lamps are defective?
\$0.: probability of defective islam P

$$
\begin{aligned}
& p=5 \%=5 \\
& \text { w.K.T } p+q=1^{100} \Rightarrow q=0.05 \\
& \text { w } 1-p \Rightarrow q=1-0.05=0.95
\end{aligned}
$$

we have $n=8$

$$
\begin{gathered}
\& p(x)=n_{x} p^{x} q^{n-x} \\
={ }^{8}{ }_{x}(0.05)^{x}(0.95)^{8-x}
\end{gathered}
$$

where x denotes defective lamp p (one or more lamps defective)

$$
\begin{aligned}
& =P(x \geqslant 1) \\
& =1-P(x<1)
\end{aligned}
$$

\qquad

$$
=1-P(x=0)
$$

$$
\begin{aligned}
I & =1-{ }_{c} \\
& =1-(0.05)^{0}(0.95)^{8-0} \\
& =1)(1)(0.95)^{8} \\
& =1.06634 \\
p(x, 1) & =0.33657
\end{aligned}
$$

(8) Ipu can do dika this you will

$$
\begin{aligned}
& p(x \geqslant 1)=p(x=1)+p(x=2)+p(x=3) \\
& +P(x=4)+P(x=5)+P(x=6)+ \\
& P(x=7)+P(x=8) \\
& =8 c_{1}(0.05)(0.95)^{8-1}+8 c_{2}(0.05)^{2}(0.95)^{8-2} \\
& +{ }_{3}^{8 c}(0.05)^{3}(0.95)^{8-3}+8_{4}(0.0 .5)^{4}(0.95) \\
& +8_{c_{s}}(0.05)^{5}(0.95)^{8-5}+8_{c_{6}}(0.05)^{6}(0.95)^{8-6} \\
& +{ }^{8} C_{7}(0.05)^{7}(0.95)^{8-7}+8 C_{8}^{(0.05)^{8}(0.95)^{8-8}} \\
& =8(0.05)(0.95)^{7}+28(0.05)^{2}(0.95)^{6}+ \\
& 56(0.05)^{3}(0.95)^{5}+70(0.05)^{4}(0.95)^{4} \\
& +56(0.05)^{5}(0.95)^{3}+28(0.05)^{6}(0.95)^{2} \\
& +8(0.05)^{7}(0.95)^{1}+(1)(0.05)^{8}(0.95)^{0} \\
& \text { (1) }
\end{aligned}
$$

$$
=0.33657
$$

(5) The probability that a person aged 60 years will dive up to 70 is 0.65 what is the probability that out of 10 persons aged 60 atlegt f of the m will live upto 70.

Son: Let x be the number of perjons aged 60 years diving upto 70 years For this we have

$$
\begin{aligned}
p & =0.65 \\
p+q & =1 \Rightarrow q=1-p=1-0.65 \\
q & =0.35
\end{aligned}
$$

Now we have $n=10$

$$
\& \quad p(x)=n_{c} p^{x} q^{n-x}
$$

- we have to find $P(x \geqslant 7)$

$$
\begin{aligned}
& p(x \geqslant 7)=p(x=7)+p(x=8)+p(x=9)+p(x=10) \\
& 10-7 \quad 8 \quad 10-8 \\
& =10_{C_{7}}(0.65)^{7}(0.35)+{ }^{10} C_{8}(0.65)^{8}(0.35) \\
& +{ }_{9}{ }_{9}(0.65)^{9}(0.35)^{10-9}+{ }_{10} c_{10}(0.65)^{10}(0.35)^{1010} \\
& =10 c_{7}(0.65)^{7}(0.35)^{3}+{ }^{10} \mathrm{c}(0.65)^{8}(0.35)^{2} \\
& +10 c_{9}(0.65)^{9}(0.35)^{1}+1_{c}(0.65)^{10}(0.35)^{0} \\
& =0.25221+0.17565+0.07249+0.01346 \\
& =0.5138
\end{aligned}
$$

(2) you an do diva this atp boil gel
same answer

$$
\begin{aligned}
P(x \geqslant 7)= & 1-P(x<7) \\
= & 1-[P(x=0)+P(x=1)+P(x=2)+ \\
& P(x=3)+P(x=4)+P(x=5) \\
& \quad+P(x=6)] \\
= & 0.5138
\end{aligned}
$$

6) The number of telephone ding buy y at an instant of time is a binomial variate with probability 0.1 that a line is buys. If 10 ling ane choogen at random, what 4 the probability that (1) no line is busy
(2) All ling are busy
(3) Atleast one line is busy
(a) Atmojt two lines are busy.

Sol: Let x denote the number of telephone lines busy. we have by data $p=0.1$

$$
\begin{aligned}
& p+q=1 \\
& q=1-p=1-0.1=0.9 \\
& q=0.9
\end{aligned}
$$

also $n=10$
we have $p(x)=n_{c_{x}} p^{x} q^{n-x}$

$$
P(x)={ }^{10} c_{x}(0.1)^{x}(0.9)^{10-x}
$$

(i) probability that no line is busy

$$
\begin{aligned}
& =p(x=0) \\
& =10_{0}(0.1)^{0}(0.9)^{10-0} \\
& =(1)(1)(0.9) \\
& =0.3487 / /
\end{aligned}
$$

(ii) probability that all ling ane busy

$$
\begin{aligned}
& =P(x=10) \\
& ={ }^{10} C_{10}(0.1)^{10}(0.9)^{10-10} \\
& =(1)(0.1)^{10}(0.9)^{10} \\
& =(1)(0.1)^{10}(1) \\
& =(0.1)^{10}
\end{aligned}
$$

(iii) Probability that atleayt one line y

$$
\begin{aligned}
\text { busy } & =P(x \geqslant 1) \\
& =1-P(x<1) \\
& =1-[P(x=0)] \\
& =1-\left[{ }^{10} c_{0}(0.1)^{0}(0.9)^{10}\right] \\
& =1-\left[(1)(1)(0.9)^{10}\right] \\
& =1-0.34867 \\
& =0.65132 / 4
\end{aligned}
$$

(iv) probability that atmost \& ling are

$$
\begin{aligned}
\text { busy }= & p(x \leq 2) \\
= & p(x=0)+p(x=1)+p(x=2) \\
= & { }^{10} C_{0}(0.1)^{0}(0.9)^{10-0}+10 C_{c}(0.1)^{(0.9)} \\
& +10 C_{2}(0.1)^{2}(0.9)^{10-2}
\end{aligned}
$$

$$
\begin{aligned}
& =(1)(1)(0.9)^{10}+10(0.1)(0.9)^{9}+45(0.1)^{2}(0.9)^{8} \\
& =0.9298
\end{aligned}
$$

$$
=0.9298
$$

Do yociasself

1) In a quiz contyt of answering 'ye' or ' $N O^{\prime}$ ' what is the probability of guessing atleast 6 answer correctly out of 10 quationy allied? Also find the probability of the same if there are 4 option for a correct answer.
Sol. let x denoty the correct answer

$$
\begin{aligned}
& p=\frac{1}{2}=0.5 \\
& p+q=1 \Rightarrow q=1-p=1-0.5=0.5 \\
& n=10 \quad q=0.5
\end{aligned}
$$

we have $p(x)=n_{c_{x}} p^{-x} q^{n-x}$

$$
\left.\left.\left.\begin{array}{rl}
& ={ }^{10} C_{x}(0.5)^{x}(0.5)^{10-x} \\
& ={ }^{10} C_{x}(0.5)^{x}(0.5)^{10}(0.5)^{-x} \\
& ={ }^{10} C_{x}(0.5)^{10}(0.5)^{x-x} \\
P(x) & ={ }^{10} C_{x}(0.5)^{10} \quad \vdots
\end{array} \right\rvert\,(0.5)^{x-x}=0.5\right)^{0}\right)
$$

probability of getting at least 6 answers

$$
\begin{aligned}
\text { correctly }= & P(x \geqslant 6) \\
= & P(x=6)+P(x=7)+P(x=8) \\
& +P(x=9)+P(x=10) \\
= & 10(0.5)^{10}+10 c(0.5)^{10}(00151) \\
& 6+10 \\
& \quad{ }_{5} c_{5}(0.5)^{10}+10 c(0.5)^{10}+10{ }_{9}(0.5)
\end{aligned}
$$

$$
\begin{aligned}
& =(0.5)^{10}\left[{ }^{10} c_{6}+{ }^{10} c_{7}+{ }^{10} c_{c}+10 c_{q}+1 c_{c}\right] \\
& =(0.5)^{10}[210+120+45+10+1] \\
P(x), 6) & =0.3769
\end{aligned}
$$

(6)

$$
\begin{aligned}
& P(x \geqslant 6)=1-P(x<6) \\
&= 1-[P(x=0)+P(x=1)+P(x=2)+ \\
&P(x=3)+P(x=4)+P(x=5)] \\
&=1-\left[{ }^{10} c_{c}(0.5)^{10}+10_{1}(0.5)^{10}+10 c_{1}(10.5)^{10}+\right. \\
&\left.10 c_{3}(0.5)^{10}+{ }_{3} c_{c}(0.5)^{10}+10 c_{5}(0.5)^{10}\right] \\
&= 1-[0.5)^{10}\left[{ }_{4}^{10} c_{0}+10 c_{1}+10 c_{2}+10 c_{3}+10 c_{4}+1 c_{5}\right. \\
&= 1-(0.5)^{10}[1+10+45+120+210+252] \\
&= 0.3769
\end{aligned}
$$

(or)

$$
\begin{aligned}
& P(x \geqslant 6)=P(x=6)+P(x=7)+P(x=8)+ \\
& P(x=9)+P(x=10) \\
& \text { we } n \text { ave } P(x)=n c_{x} P^{x} q^{n-x} \\
& ={ }^{10} c(0.5)^{6}(0.5)^{4}+{ }_{6} c_{9}(0.5)^{7}(0.5)^{3} \\
& 6 \\
& +{ }_{6}^{10} c_{8}(0.5)^{8}(0.5)^{2}+{ }^{10} c_{9}(0.5)^{9}(0.5)^{1} \\
& \quad+{ }^{10} c_{10}(0.5)^{10}(0.5)^{0}
\end{aligned}
$$

$$
\begin{aligned}
& ={ }^{10} c_{6}(0.5)^{10}+{ }^{10} c_{7}(0.5)^{10}+{ }^{10} c_{8}(0.5)^{10}+10{ }_{10}(0.5)^{10} \\
& =(0.5)^{10}\left[10 c_{6}+10(0.5)^{10}+10 c_{8}+{ }^{10} c_{c}+10 c_{10}\right]
\end{aligned}
$$

$10.5(386)=0.3769$
(8) In a Sampling large number of parts manufactured by a company, the mean number of defectives in sample of 20 is 2, out of 1000 such sample how many would be expected to contain atleayt 3 defective parts.

Sol: Given $\mu=n P=2$ by data $n=20$

$$
\begin{aligned}
& \therefore n p=2 \Rightarrow 20 p=2 \Rightarrow p=\frac{2}{20}=\frac{1}{10} \\
& \begin{aligned}
p=1 / 10=0.1 \quad \text { w.K.T } p+q & =1 \\
q & =1-p=1-0.1=0.9 \\
q & =0.9
\end{aligned}
\end{aligned}
$$

Let x denotes the defective part $p(x \geqslant 3)=$ probability op at least 3 defective

$$
P(x \geqslant 3)=P(x=3)+P(x=4)+P(x=5) \cdots+P(=0
$$

(81)

$$
\begin{aligned}
P(x \geqslant 3) & =1-P(x<3) \\
& =1-[P(x=0)+P(x=1)+P(x=2)]
\end{aligned}
$$

we have $p(x)=n_{x} p^{x} q^{n-x}$

$$
\begin{aligned}
=1- & {\left[{ }^{20} c_{0}(0.1)^{0}(0.9)^{20-0}\right.} \\
& +{ }^{20} c_{1}(0.1)^{1}(0.9)^{20-1} \\
& \left.+20 c_{9}(0.1)^{2}(0.9)^{20-2}\right]
\end{aligned}
$$

$$
\begin{aligned}
&= 1-\left[{ }_{20} c_{b}(0.9)^{10}+20_{c}(0.9)^{19}(0.1)\right. \\
&\left.+20 C_{q}(0.1)^{1}(0.9)^{18}\right] \\
&= 1-\left[(1)(0.9)^{00}+20(0.1)(0.9)^{19}\right. \\
&\left.+190(0.1)^{1}(0.9)^{18}\right]
\end{aligned}
$$

Bats Number of defectives in 1000 Simply

$$
\text { Is } 323
$$

(9) In 800 families with 5 ohildern each how many familig would be expected to have (i) 3 boys
(ii) 5 girl 8
(iii) either 20 or 3 bow
(iv) at most 2 girls
by assuming the probabilities for boys and girls to be equal

Qoin: $\quad P=$ probability of having a boy $=1 / 2=0.5$
$q=$ probability of hawing a $g(r)=1 / 2=0.5$
let x denotes the no, of boys my

$$
\begin{align*}
& n=5 \\
& P(x)=n_{c_{x}} P^{x} q^{n-x} \tag{i}\\
& P(x)=5_{c}(0.5)^{x}(0.5)^{n-x}
\end{align*}
$$

(i)

$$
\begin{aligned}
P(x=3) & =5 c_{3}(0.5)^{3}(0.5)^{5-3} \\
& =10(0.5)^{3}(0.5)^{2}=10(0.5)^{5} \\
& =0.3125 / 1
\end{aligned}
$$

Thy expected number of families with 3 bogs is $800 \times 0.3125=250$
(i)

$$
\begin{aligned}
p(x=5) & =5 c_{5}(0.5)^{5}(0.5)^{5-5} \\
& =(1)(0.5)^{5}(0.5)^{0} \\
& =(1)(0.03125)(1) \\
& =0.03125
\end{aligned}
$$

Thy expected no\% of familial with 5 girl 8 \& $800 \times 0.03125=25$
(ii)

$$
\begin{aligned}
& P(x=2)+P(x=3)=5 c_{2}(0.5)^{2}(0.5)^{5-2} \\
& \quad+5 c_{3}(0.5)^{3}(0.5)^{5-3} \\
&=(10)(0.5)^{2}(0.5)^{3}+10(0.5)^{3}(0.5)^{2} \\
&=(10)(0.5)^{5}+10(0.5)^{5} \\
&= 0.625
\end{aligned}
$$

- 5 Thy expected no\% of familic with 2 or 3 boys is 500
(v) Atimost 2 girls means

$$
\begin{align*}
& (p: x \leq 2) \rightarrow \text { family can have } 5 \text { nous \& girls } \\
& \text { ubous \& } 1 \text { girl. } \tag{6}\\
& 3 \text { nous \& girl } \\
& P(x=5)+P(x=4)+P(x=3) \\
& =0.03125+5 c_{4}(0.5)^{4}(0.5)+0.3125
\end{align*}
$$

$$
=0.5
$$

Expected no\% of families with atmont

$$
2 \text { girls is } 800 \times 0.5=400
$$

(10) Four coins are tossed loo times and the following repults were obtained Fit a binomial distribution for the date \& calculate the theoretical frequencies

Nog. of Beads	0	1	2	3	4
Frequency	5	29	36	25	5

Sin let x denote the number of heads and f the Coorypanding frequency Since the data is in the form of a frequency distribution we shall first Caluclate the mean.

$$
\begin{aligned}
\operatorname{mean}(\mu) & =\sum_{\sum x} f x \\
& =\frac{0+29+72+75+20}{100} \\
& =\frac{196}{100} \\
\mu & =1.96
\end{aligned}
$$

$\mu=n P$ for binomial distribution

$$
\begin{aligned}
& n=4, \quad H P=1.96 \Rightarrow p=0.49 \\
& \text { four } \\
& \text { w.K.T } p+q=1 \\
& q=1-p \\
& q=1-0.49 \\
& q=0.51
\end{aligned}
$$

we have $p(x)={ }_{c}^{n_{x}} p^{x} q^{n-x}$

$$
P(x)=4 C_{x}^{x}(0.49)(0.51)^{1-x}
$$

Since 4 coins were tossed loo time expected (theoretical) frequencily are obtained from $F(x)=100 p(x)$

$$
=100 u_{x}(0.49)^{x}(0.51)
$$

when $x=0,1,2,3,4$

$$
\begin{aligned}
& F(0)=100(0.49)^{0}(0.51)^{4-0}=6.765 \approx 7 \\
& F(1)=100 e_{1}^{4} c_{1}(0.49)^{1}(0.51)^{u-1}=25.999 \approx 26 \\
& F(7)=100{ }^{2}{ }_{c}^{4}(0.49)^{2}(0.51)^{u-2}=37.47 \approx 37 \\
& F(3)=1004_{c}(0.49)^{3}(0.51)^{u-3}=24.0004 \approx 24 \\
& F(u)=1004_{C}(0.49)^{4}(0.51)^{0}=5.765 \approx 6
\end{aligned}
$$

required theoretical frequencies are $7,26,37,24,6$
(1) The probability of shooter hitting a target is $1 / 3$. How many fines he should shot so that the probability op hitting the target at least once is morrethan $3 / 4$.
Son Let $p=$ Probability of hitting a target

$$
=1 / 3
$$

wANT $p+q=1$

$$
\begin{aligned}
& q=1-p=1-1 / 3=2 / 3 \\
& p(x)=n_{c} p^{x} q^{n-x} \\
& p(x)=n_{c}(1 / 3)^{x}(2 / 3)^{n-x}
\end{aligned}
$$

$$
y-P(x=0)>3 / 4
$$

$$
1-\left(n_{0} p^{0} q^{n}\right)>3 / 4
$$

we have to find $n \quad \ni$;

$$
\frac{P(x \geqslant 1)>3 / 4}{1-P(x<1)>3 / 4}
$$

$$
\begin{aligned}
& 1-(2)^{n}>3 / 4 \\
& 1-(2 / 3)^{n}>3 / 4
\end{aligned}
$$

$$
\begin{aligned}
& -(+2 / 3)^{n}>\frac{3}{4}-1 \\
& -(2 / 3)^{n}>-\frac{1}{4} \\
& (2 / 3)^{n}<1 / 4 \\
& 2 / 3=0.67,1 / 4=0.25
\end{aligned}
$$

we can find n by inspection method

$$
\begin{aligned}
& (2 / 3)^{\prime}=0.67, \quad(2 / 3)^{2}=0.44,(2 / 3)^{3}=0.3, \\
& (2 / 3)^{4}=0.2 \\
& \text { now } 0.2<0.25 \\
& n=4
\end{aligned}
$$

poisson Distribution:-
It is regarded of the dimiting form of the binomial distribution when n is very large $(n \rightarrow \infty)$ \& P the probability of success if very 1 mail $(q \rightarrow 0)$ fo that $n p$ tends to fixed finite constant say m. Then $p(x)=\frac{e^{-m} m^{x}}{x!}$, where $m=n p$ To Show that P.D is a probability f^{n} it satigfies the condition y (1) $P(x) \geqslant 0 Q \sum^{P}(x)=1$ Now $\sum p(x)=\sum \frac{e^{-m} m^{x}}{x!}$
Let y tare $x=0,1,2,3$.
Let y tare $x=0$,

x	0	1	2
3			
$P(x)$	e^{-m}	$\frac{e^{-m} m}{1!}$	$\frac{e^{-m} m^{2}}{2!}$
	$e^{-m} m^{3}$		
$3!$			

we have $P(x) \geqslant 0$ and

$$
\begin{aligned}
\sum P(x) & =e^{-m}+\frac{m e^{-m}}{1!}+\frac{m^{2} e^{-m}}{2!}+\frac{m^{3} e^{-m}}{3!}+ \\
& =e^{-m}\left\{1+\frac{m}{1!}+\frac{m^{2}}{2!}+\frac{m^{3}}{3!}+\cdots\right\} \\
& =e^{-m} \cdot e^{m} \\
& =e^{-m+m}=e^{0} \\
\sum P(x) & =1, \quad \text { both the condition y }
\end{aligned}
$$ are satighind, hence $P(x)$ is a probability $f^{n} /$

Mean \& standard deviation of poisson distribution

$$
\begin{aligned}
\text { mean }(\mu) & =\sum_{x=0}^{\infty} x p(x) \\
& =\sum_{x=0}^{\infty}[x] \frac{m^{x} e^{-m}}{x!} \\
& =\sum_{x=0}^{\infty} \frac{x m^{x} e^{-m}}{x(x-1)!} \\
& =\sum_{x=1}^{\infty} \frac{m^{x-1+1} e^{-m}}{(x-1)!} \\
& =\sum_{x=1}^{\infty} \frac{m^{x-1} \cdot m \cdot e^{-m}}{(x-1)!} \\
& =m e^{-m} \sum_{x=1}^{\infty} \frac{m^{x-1}}{(x-1)!}
\end{aligned}
$$

$$
\begin{aligned}
& =m e^{-m}\left[1+\frac{m}{1!}+\frac{m^{2}}{2!}+\frac{m^{3}}{3!}+\cdots\right] \\
& =m e^{-m} e^{m} \\
& =m e^{-m+m} \\
& =m e^{0} \\
& =m
\end{aligned}
$$

$$
\operatorname{mean}(\mu)=m / 1
$$

$$
\operatorname{Variance}(V)=\sum_{x=0}^{\infty} x^{2} p(x)-\mu^{2}
$$

Now

$$
\begin{aligned}
& \omega \sum_{x=0}^{\infty} x^{2} p(x)=\sum_{x=0}^{\infty}[x(x-1)+x] p(x) \\
& =\sum_{x=0}^{\infty}[x(x-1) p(x)+x p(x)] \\
& =\sum_{x=0}^{\infty} x(x-1) p(x)+\sum_{x=0}^{\infty} x p(x) \\
& =\sum_{x=0}^{\infty} x(x-1) p(x)+m \\
& =\sum_{x=0}^{\infty} x(x-1) m^{x} e^{-m}+m \\
& =\sum_{x=0}^{\infty} \frac{x(x-1) m^{x} e^{-m}}{x(x-1)(x-2)!}+m \\
& =\sum_{x=0}^{\infty} \frac{m^{x} e^{-m}}{(x-2)!}+m \\
& =\sum_{x=2}^{\infty} \frac{m^{-m}}{x-2+2}+m \\
& \frac{x-2)!}{(x-m}+m
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{x=2}^{10} \frac{m^{x-2} \cdot m^{2} \cdot e^{-m}}{(x-2)!}+m \\
& =m^{2} e^{-m} \sum_{x=2}^{\infty} \frac{m^{x-2}}{(x-2)!}+m \\
& =m^{2} e^{-m}\left[1+\frac{m}{1!}+\frac{m^{2}}{2!}+\frac{m^{3}}{3!}+\cdots\right]+m \\
& =m^{2} e^{-m} e^{m}+m \\
& =m^{2} e^{-m+m}+m \\
& =m^{2} e^{0}+m \\
& =m^{2}+m \\
& \therefore \sum x^{2} p(x)=m^{2}+m
\end{aligned}
$$

Now: (1) become
Variance $V=m^{2}+m-\mu^{2}$

$$
\begin{aligned}
\text { variance } V & =m+M \cdot T \quad \text { eon } \\
& =M R^{2}+m \cdot M R^{2} \\
\text { variance, } V & =m \\
S \cdot D(\sigma) & =\sqrt{V}=\sqrt{m}
\end{aligned}
$$

hence mean $\mu=m$, Variance $(v)=m$,

$$
\& S \cdot D(\sigma)=\sqrt{m}
$$

we can say that mean \& variance are equal for the poisson diminution
problems
2% of the fuses manufactured by a firm are found to be defective find the probability that a box containing 200 fuses contains O no defective fuses
C) 3 or more defective fuses.
(bi)

$$
\begin{aligned}
p & =\text { probability of defective furs } \\
& =2 / 100 \\
& =0.02
\end{aligned}
$$

\therefore mean no\%: of defectives $\mu=m=n p$

$$
\begin{aligned}
& =200 \times 0.02 \\
& \mu=m=4 \\
& \therefore m=4
\end{aligned}
$$

poingon diqtribution is given by

$$
\begin{aligned}
P(x) & =\frac{m^{x} e^{-m}}{x!} \\
& =\frac{u^{x} e^{-4}}{x!} \\
P(x) & =\frac{u^{x}(0.0183)}{x!}
\end{aligned}
$$

(1) Prob (no defective furn) $=P(x=0)$

$$
\begin{aligned}
& =\frac{u^{0}(0.0183)}{0!} \\
& =\frac{(1) 0.0183}{(1)} \\
& =0.0183 / /
\end{aligned}
$$

(ii) Prob. (3 or more defective fall)

$$
\begin{aligned}
& =P(x \geqslant 3) \\
& =1-P(x \leqslant 3)
\end{aligned}
$$

$$
\begin{aligned}
& =1-[P(0)+P(1)+P(2)] \\
& =1-\left[0.0183 \cdot \frac{u^{0}}{0!}+0.0183 \cdot \frac{u^{\prime}}{1!}+0.0183 \cdot \frac{u^{2}}{2!}\right. \\
& =1-0.0183\left[\frac{0)}{(1)}+\frac{61}{1}+\frac{16}{2}\right] \\
& =1-0.0183[1+u+8] \\
& =1-0.2379 \\
& =0.7621
\end{aligned}
$$

(2) Fit a poisson digtribution for the following data i Caluclate the theoretical freguenciel.

theoretical frequence.					
x	0	1	2	3	4
f	122	60	15	2	1

Song

$$
\begin{aligned}
p(x) & =\frac{e^{-m} m}{x!} \\
\mu=m & =\frac{\sum f x}{\sum f}=\frac{\theta(122)+(1)(60)+2(15)+3(2)+4(1)}{122+60+15+2+1} \\
& =\frac{60+30+6+4}{200} \\
\mu=m & =\frac{100}{200} \\
m & =0.5
\end{aligned}
$$

Now $p(x)=\frac{e^{-0.5}(0.5)^{x}}{x!}$

Now we have to find theoretical frequemid Let $f(x)=p(x) \sum f$
$f(x)=p$
put $x=0,1,2,3,4$

$$
\begin{aligned}
& f(0)=200 \frac{e^{-0.5}(0.5)^{0}}{0!}=200 \times 0.6065=121.3 \\
& f(1)=200 \frac{e^{-0.5}(0.5)^{\prime}}{1!}=200 \times 0.6065 \times 0.5 \\
& f(1)=60.65 \approx 61 \\
& f(2)=200 \frac{e^{-0.5}(0.5)^{2}}{2!}=\frac{200 \times 0.6065 \times 0.25}{2}=15.1625 \\
& f(3)=200 \frac{e^{-0.5}(0.5)^{3}}{3!}=\frac{200 \times 0.6065 \times 0.125}{2} \\
& f(3)=2.527 \approx 3 \\
& f(4)=200 \frac{e^{-0.5}(0.5)^{4}}{4!}=\frac{200 \times 0.6065 \times 0.0625}{24} \\
& f(4)=0.3157 \approx 0
\end{aligned}
$$

\therefore Theoretical frequencies are $121,61,15,3,0$
(3) A no, of accidents in a year to taxi drivers in a city follows a poisson distribution with mean 3. out of 1000 taxi drivers find approximetly the number of the drivers with (1) no accident in a year (2) morrethan 3 accident in a year

By data mean $(\mu)=3$ i.e $\mu=m=3$

$$
m=3
$$

poingon dintribution is given by

$$
\begin{aligned}
& p(x)=\frac{m^{x} e^{-m}}{x!} \\
& p(x)=\frac{3^{x} e^{-3}}{x!}
\end{aligned}
$$

(i) no accident in a year

$$
P(x=0)=\frac{3^{0} e^{-3}}{0!}=\frac{(0)(0.04978)}{1}=0.04978
$$

Number of drivers out of 1000 with no accident in a year is 1000×0.04978

$$
\begin{aligned}
& =49 \cdot 78 \\
& 450
\end{aligned}
$$

(ii) morethan 3 accidents in a year

$$
\begin{aligned}
& P(x \geqslant 3)=1-P(x \leqslant 3) \\
& =1-[P(0)+P(1)+P(2)+P(3)] \\
& =1-\left[\frac{3 e^{-3}}{0!}+\frac{3 e^{-3}}{1!}+\frac{3^{2} e^{-3}}{2!}+\frac{3^{3} e^{-3}}{3!}\right] \\
& =1-e^{-3}\left[1+3+\frac{9}{2}+\frac{27}{6}\right] \\
& =1-(0.04978)(13) \\
& =1-(0.64714) \\
& =0.3528
\end{aligned}
$$

No. of drivers out of 1000 with morethan 3 accidents in a year

$$
\begin{aligned}
& =1000 \times 0.3528 \\
& =352.86 \text { प } 353
\end{aligned}
$$

Do yourself
(1) The number of accident per day (x) as recorded in a textile industry over a period of 400 days is given Fit a poisson digtribution for the data \& caludate the theoretical frequencies

x	0	1	2	3	4	5
f	173	168	37	18	3	1

\Rightarrow Son Refer problem no\% (3)
(5) A shop has 4 dijel generator which its hing every day. The dimes for a generator set on an averand is a poingon variate with value ge $5 / 2$. Obtain the probability that on a particular day (1) there way no demand
(1) a demand had mo
Sol ${ }^{20}$ By data mean $\mu=m=5 / 2=2.5$
poisson distribution

$$
\begin{aligned}
& p(x)=\frac{m^{x} e^{-m}}{x!} \text { y given by } \\
& p(x)=\frac{(2 \cdot 5)^{x} e^{-2 \cdot 5}}{x!}
\end{aligned}
$$

(i) No demand for generator

$$
\begin{aligned}
& P(x=0)=P(0)=\frac{(2.5)^{0} e^{-2.5}}{0!}=0.082085
\end{aligned}
$$

(ii) If a demand had to be refused, there should have been a demand for morethan 4 generator 8 . we have to find $P(x>4)$

$$
\begin{aligned}
& P(x>4)=1-P(x \leq 4) \\
& =1-[P(0)+P(1)+P(2)+P(3)+\text { Phi }] \\
& \left.=\frac{1-\left[\frac{(2.5)^{0} e^{-2.5}}{0!!}+\frac{(2.5)^{1}\left(e^{-2.5}\right)}{1!}+\left(\frac{0.5}{} e^{-2.5}\right.\right.}{1!}\right]
\end{aligned}
$$

$$
=1-e^{-2.5}\left[1+2.5+\frac{(2.5)^{2}}{2!}+\frac{(2.5)^{3}}{3!}+\frac{(2.5)^{4}}{4!}\right.
$$

(v) $u)=0.10882$
(0) The probability that a news reader Commits no mistake in reading the news if $1 / e^{3}$. Find the probability that on a particular news broadcast he Commits (1) only 2 mistakes
(2) morethan 3 mistakes
(3) atmost 3 mistakes

San ie by data
probability that a news reader commits no mistake $P(x=0)$ or $P(0)=1 / e^{3}=e^{-3}$ Now poingon distribution is

$$
P(x)=\frac{m^{x} e^{-m}}{x!}
$$

where x denoty commiting mistake we have $e^{-m}=e^{-B} \Rightarrow-m=-3 \Rightarrow m=3 \rho$

$$
\therefore P(x)=\frac{3^{x} e^{-3}}{x!}
$$

(1) Probability of commiting 2 mistakes

$$
\begin{aligned}
& P(x=2) \text { or } P(2)=\frac{3^{2} e^{-3}}{2!}=0.0498 \times \frac{9}{2} \\
& P(2)=0.2241
\end{aligned}
$$

(2) probability of committing moretham 3 mistake y is $p(x>3)$

$$
\begin{aligned}
P(x>3) & =1-P(x \leq 3) \\
& =1-[P(0)+P(1)+P(2)+P(3)
\end{aligned}
$$

$$
\begin{aligned}
& =1-e^{-3}[1+3+9 / 2+27 / 6] \\
& =1-e^{-3}(13) \\
p(x) 3) & =0.3528
\end{aligned}
$$

(3) probability of commiting atmont 3 mintalus

$$
\begin{aligned}
P(x \leq 3) & =P(0)+P(1)+P(2)+P(3) \\
& =e^{-3}+\frac{e^{-3} 3^{1}}{1!}+e^{-3} \cdot \frac{3^{2}}{2!}+e^{-3} \frac{3^{3}}{3!} \\
& =e^{-3}\left[1+3+\frac{9}{2}+\frac{27}{6}\right] \\
P(x \leq 3) & =0.6472
\end{aligned}
$$

(7) If the probability of a bad reaction from a certain injection is 0.001 , determine the chance that out of 2000 individuals, morrethan two will get a bad reaction.

Sorn poisson distribution is given by

$$
\begin{aligned}
p(x) & =\frac{m^{x} e^{-m}}{x!} \\
n & =2000 \\
p & =0.001
\end{aligned}
$$

mean $\mu=m=n P=2000 \times 0.001$

$$
m=2
$$

we have to find $P(x>2)$

$$
\begin{aligned}
P(x>2) & =1-P(x \leq 2) \\
& =1-[P(0)+P(1)+P(2)]
\end{aligned}
$$

$$
\begin{aligned}
& \omega \cdot K \cdot T P(x)=\frac{2^{x} e^{-2}}{x!} \\
= & 1-\left[\frac{e^{-2} 2}{2!}+e^{-2} \cdot \frac{2^{1}}{1!}+\frac{e^{-2} 2^{2}}{2!}\right] \\
= & 1-e^{-2}[1+2+4 / 2] \\
= & 1-e^{-2}[1+2+2] \\
f(x) 2) & =0 \cdot 3233
\end{aligned}
$$

(8) Do yourself

In a certain factory turning out razor blade r there is a small probability of $1 / 500$ for any blade to be defective. the blade are supplied in packets of 10. Use poisson distribution to caluciate the approximate no\% of packets containing (1) no defective
(ii) one defective
(iii) Two defective blades in a consignment of 10,000 packets.
sons. Probability of a defective blade

$$
\begin{aligned}
& P=1 / 300=0.002 \\
& n=10
\end{aligned}
$$

mean $\mu=m=n P=10 \times 0.002=0.02$

$$
\begin{aligned}
m & =0.02 \\
p(x) & =\frac{m^{x} e^{-m}}{x!} \\
p(x) & \left.=\frac{(0.02)^{x} e^{-0.02}}{x!} \right\rvert\, e^{-0.02}=0.9802 \\
p(x) & =\frac{(0.02)^{x}(0.9802)}{x!}
\end{aligned}
$$

(1) Prob. of no defective $=P(x=0)=0.9802 \times 101$ $p(x=0)$ or $p(0)=0.9802$

No\%. of pacecets containing no defective blades out op 10,000

$$
\begin{aligned}
& =0.9802 \times 10,000 \\
& =9,820 \mathrm{H}
\end{aligned}
$$

(2) Probability of one defective $=P(x=1)$ (64) $P(1)=\frac{0.9802 \times(0.02)^{1}}{1!}=0.0196$

No\% of packets containing on e defective blade out of $10,000=0.0196 \times 1000$

$$
=196
$$

(3) probability of two defective $=P(x=2)$ or $P(2)$.

$$
\begin{aligned}
& =\frac{0.9802 \times(0.02)^{2}}{2!} \\
P(2) & =0.00019
\end{aligned}
$$

No, of packets containing two defective Blade out of $10,000=10,000 \times 0.00019$

$$
\begin{aligned}
& =1.9 \\
& 42 / 1
\end{aligned}
$$

(QR) $P=1 / 500=0.002$
(0) mean $m=n P=10 \times 0.002=0.02 / 1$ you ep i, $P(x)=\frac{m^{x} e^{-m}}{x!}=\frac{(0.02)^{x} e^{-0.02}}{x!}$

Let $f(x)=10,000 p(x)$

$$
f(x)=10,000 \frac{(0.02)^{x} e^{-0.02}}{x!}
$$

(1) probability of no defective $f(0)=$

$$
=10,000 \frac{(0.02)^{0} e^{-0.02}}{0!}=98021
$$

(ii) probability of one defective $=f(1)$

$$
=10,000 \times \frac{(0.02) e^{-0.02}}{!!}
$$

$$
=196
$$

(ii) probability of two defection

$$
f(2)=\frac{10,000(0.02)^{2} e^{-0.02}}{2!}=1.96 \approx 2 /
$$

(9) If x follows a poisson variate \nexists; $p(x=2)=2 / 3 p(x=1)$, find $p(x=0)$ and $P(x=3)$
Son: we have $p(x=x)=\frac{m^{x} e^{-m}}{x!}$
By data

$$
\begin{aligned}
& P(x=2)=2 / 3 P(x=1) \\
& \frac{m^{2} a^{-m}}{2!}=\frac{2}{3} \frac{m a^{-m}}{1!} \\
& \frac{m}{2}=\frac{2}{3} \Rightarrow m=4 / 3 / 4
\end{aligned}
$$

hence $p(x=x)=\frac{m^{x} e^{-m}}{x!} ; m=\frac{u}{3}$

$$
\begin{aligned}
& P(x=x)=\frac{(4 / 3)^{x} e^{-4 / 3}}{x!} \\
& P(x=0)=\frac{(4 / 3)^{0} e^{-4 / 3}}{0!}=e^{-4 / 3}=0.2636 \\
& P(x=3)=\frac{(4 / 3)^{3} e^{-4 / 3}}{3!}=0.10414
\end{aligned}
$$

(10) If x is a poisson variate \exists; $p(x=2)=9 P(x=4)+90 P(x=6)$, compute the mean \& variance of poisson dintribation.

SoIl: we have $p(x)=\frac{m^{x} e^{-m}}{x!}$
by buying the data we have

$$
\begin{aligned}
& P(x=2)=9 P(x=4)+90 P(x=6) \\
& \frac{m^{2} e^{-m}}{2!}=9 \frac{m^{4} e^{-m}}{4!}+90 \frac{m^{6} e^{-m}}{6!} \\
& \frac{a x^{2} e^{-m}}{\theta}=m^{2} e^{-m}\left[\frac{9 m^{2}}{2 u}+9 Q \frac{m^{4}}{72 a}\right] \\
& \frac{1}{\theta}=\frac{3}{9} \frac{m^{2}}{88}+\frac{m^{4}}{8} \\
& \frac{1}{2}=\frac{3}{8} m^{2}+\frac{m^{4}}{8} \\
& 1=\frac{3}{4} m^{2}+\frac{m^{4}}{4} \\
& H=3 m^{2}+m^{4} \\
& m^{4}+3 m^{2}-4=0 \\
& -4 m^{4} \\
& \left(m^{2}+x^{2}+\left(+(2)^{2}\right. \text {. }\right. \\
& +4 m^{2} m^{2} \\
& m^{4}+4 m^{2}+m^{2}-4=0 \\
& m^{2}\left(m^{2}+4\right)-1\left(m^{2}+4\right)=0 \\
& \left(m^{2}+4\right)\left(m^{2}-1\right)=0 \\
& m^{2}+u=0 \text { or } m^{2}-1=0 \\
& m^{2}=-4, \quad m^{2}=1 \\
& m= \pm 2 i \quad m= \pm 1
\end{aligned}
$$

Oveglect complex root \& $\&$ negative values

$$
\therefore m=1
$$

variance ound mean are equal in poingon diqtribution

$$
\therefore m=\text { variance }=1
$$

variance oind mean are equal in poiggon diqtribution

$$
\therefore m=\text { variance }=1
$$

Continuous probability distribution
If every x belonging to the range of contineous random variable ' x ' we assign a real no, $f(x)$ satisfying the Conditions (1) $f(x) \geqslant 0$

$$
\text { (2) } \int_{-\infty}^{\infty} f(x) d x=1
$$

then $f(x)$ is called a contincous probability function or probability density function

Cumulative distribution function:-
If x y a contineous random variable with probability density function $f(x)$ then $F(x)$ is defined by

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(x) d x \text { is }
$$

called cumulative distribution function
NOTE:

$$
\begin{aligned}
& \frac{d}{d x}[F(x)]=f(x) \\
& P(x \geqslant r)=\int_{\sigma}^{\infty} f(x) d x \\
& P(x<r)=1-P(x \geqslant r) \\
& P(x<r)=1-\int_{\sigma}^{\infty} f(x) d x
\end{aligned}
$$

mean \& Variance of Contineous probability distribution

$$
\begin{aligned}
& \text { mean }(\mu)=\int_{-\infty}^{\infty} x f(x) d x \\
& \text { Variance }\left(\sigma^{2}\right)=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x
\end{aligned}
$$

Exponential distribution:
the contineous probability distribution having the probability density function $f(x)$ given by

$$
f(x)= \begin{cases}\alpha e^{-\alpha x} & \text { for } x>0 \\ 0 & \text { otherwise, where } \alpha>0\end{cases}
$$

Is known as exponential distribution If $f(x)>0$ \& we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{0}^{\infty} \alpha e^{-\alpha x} d x \\
& =\alpha \int_{0}^{\infty} e^{-\alpha x} d x \\
& =\alpha\left[\frac{e^{-\alpha x}}{-\alpha}\right]_{0}^{\infty} \\
& =\frac{\alpha}{-\alpha}\left[e^{-\alpha x}\right]_{0}^{\infty} \\
& =-\left[e^{-\infty}-e^{0}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =-[0-1] \\
& =1 \\
& \int_{-\infty}^{\infty} f(x) d x=1
\end{aligned}
$$

$f(x)$ satisfy bath the conditions required for a contineous probability function / probability density function.
mean \& variance of Exponential X distribution

$$
\begin{aligned}
\text { mean }(\mu) & =\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{+\infty}^{\infty} x \alpha e^{-\alpha x} d x \\
& =\alpha \int_{+\infty}^{\infty} x e^{-\alpha x} d x
\end{aligned}
$$

Applying Bernoulli's. rule of integration by parts we have,

$$
\begin{aligned}
\mu & =\alpha\left[x\left(\frac{e^{-\alpha x}}{-\alpha}\right)-(1)\left(\frac{e^{-\alpha x}}{\alpha^{2}}\right)\right]_{0}^{\infty} \\
\mu & =\alpha\left[(0-0)-\left(0-\left(+\frac{1}{\alpha^{2}}\right)\right)\right] \\
& =\alpha\left[0+\frac{1}{\alpha^{2}}\right]
\end{aligned}
$$

$$
\begin{gathered}
\mu=\alpha\left(1 / \alpha^{2}\right) \\
\mu=1 / \alpha
\end{gathered}
$$

$$
\text { variance }\left(\sigma^{2}\right)=: \int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x
$$

$$
\alpha^{2}=\int_{0}^{\infty}(x-\mu)^{2} \alpha e^{-\alpha x} d x
$$

$$
\sigma^{2}=\alpha \int_{0}^{10}(x-\mu)^{2} e^{-\alpha x} d x
$$

Applying Bernoulli's rule we have

$$
\begin{aligned}
\sigma^{2} & =\alpha\left[(x-\mu)^{2} \frac{e^{-\alpha x}}{-\alpha}-2(x-\mu) \frac{e^{-\alpha x}}{\alpha^{2}}+\frac{2}{\left.\frac{e^{-\alpha x}}{-\alpha^{3}}\right]_{0}^{\infty}}\right. \\
& =\alpha\left[-\frac{1}{\alpha}\left(0-\mu^{2}\right)-\frac{2}{\alpha^{2}}(0-(-\mu))-\frac{2}{\alpha^{3}}(0-1)\right] \\
& =\alpha\left[\frac{\mu^{2}}{\alpha}-\frac{2 \mu}{\alpha^{2}}+\frac{2}{\alpha^{3}}\right]
\end{aligned}
$$

But $\mu=\frac{1}{\alpha}$

$$
\begin{aligned}
& =\alpha\left[\frac{1 / \alpha^{2}}{\alpha}-\frac{2 \cdot 1 / \alpha}{\alpha^{2}}+\frac{2}{\alpha^{3}}\right] \\
& =\alpha\left[1 / \alpha^{3}-\frac{2}{\alpha} \beta+2 / \alpha^{3}\right] \\
\alpha^{2} & =\frac{1}{\alpha^{2}}
\end{aligned}
$$

$$
\sigma=\frac{1}{\alpha}
$$

Thus for exponential distribution

$$
\text { mean }(\mu)=\frac{1}{\alpha} ; \rho \cdot \Delta(\sigma)=\frac{1}{\alpha}, \text { variance }
$$

$$
\sigma^{2}=1 / \alpha^{2}
$$

NoTE: mean $=S . D$ for the exponential dytribution.
problems
(1) Find which of the following function is a probability density function.
(i) $f_{1}(x)= \begin{cases}2 x, & 0<x<1 \\ 0, & \text { otherwise }\end{cases}$
(ii) $f_{2}(x)=\left\{\begin{array}{cc}2 x, & -1<x<1 \\ 0 & \text { otherwise }\end{array}\right.$
(iii) $f_{8}(x)=\left\{\begin{array}{cl}|x|, & |x| \leq 1 \\ 0, & \text { otherwise }\end{array}\right.$
(iv) $f_{u}(x)=\left\{\begin{array}{cc}2 x & 0<x \leq 1 \\ 4-4 x & 1<x<2 \\ 0 & \text { otherwine }\end{array}\right.$

Sen. To Show that given functions are p.d.f it should satigfig the conditions

$$
\text { (1) } f(x) \geqslant 0
$$

(ii) $\int_{-\infty}^{\infty} f(x) d x=1$
(i) clearly $f(x) \geqslant 0$

$$
\begin{aligned}
& \operatorname{arly} f(x) \geqslant 0 \\
& f_{1}(x) d x=\int_{0}^{1} f_{1}(x) d x=\int_{0}^{1} 2 x d x=\left[\frac{x^{2}}{2}\right]_{0}^{1}
\end{aligned}
$$

$$
\begin{aligned}
&=\left[x^{2}\right]_{0}^{1} \\
&=[1-0] \\
& \int_{-\infty} f_{1}(x) d x=1 \\
& \therefore f_{1}(x) \text { is a p.d.f }
\end{aligned}
$$

(ii) The given function can be coritien in the form

$$
\begin{aligned}
& f_{2}(x)= \begin{cases}2 x, & -1<x<0 \\
2 x, & 0<x<1 \\
0 & \text { otherwise } .\end{cases} \\
& \text { In }-1<x<0, f_{2}(x)=2 x \text { is lest han } 2 \text { eco } \\
& \int_{-\infty}^{\infty} f_{2}(x) d x=\int_{-1}^{1} f_{2}(x) d x \\
& =\int_{-1}^{1} 2 x d x \\
& =2 \cdot\left[\frac{x^{2}}{2}\right]_{-1}^{1} \\
& =\left[1-(-1)^{2}\right] \\
& =1-1 \\
& =0
\end{aligned}
$$

both the conditions are not satisfied.

$$
\therefore f_{2}(x) \text { is not a p.d.f. }
$$

(iii) Evidently $f_{3}(x)=|x| \geqslant 0$

$$
\therefore p_{3}(x) \text { is } p \cdot d \cdot f
$$

(iv) $f_{4}(x)=2 x>0$ in $0<x \leq 1$
$f_{4}(x)=4-4 x$ is negative in $1<x<2$
The firgt condition is not satinfied $f_{u}(x)$ is not a p.d.f

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f_{3}(x) d x=\int_{-1}^{1} f_{3}(x) d x=\int_{-1}^{1}|x| d x \\
& |x|=\left\{\begin{array}{cc}
-x & -1<x<0 \\
x & 0<x<1 \\
0 &
\end{array}\right. \\
& \int_{\infty}^{\infty} f_{3}(x) d x=\int_{-1}^{0}-x d x+\int_{0}^{1} x d x \\
& =\left[-\frac{x^{2}}{2}\right]_{-1}^{0}+\left[\frac{x^{2}}{2}\right]_{0}^{1} \\
& =-\frac{1}{2}\left[0-(-1)^{2}\right]+1 / 2[1-0] \\
& =-\frac{1}{2}[-1]+1 / 2[1] \\
& =1 / 2+1 / 2 \\
& =1 /
\end{aligned}
$$

(d) Find the value of c such that

$$
f(x)= \begin{cases}\frac{x}{6}+c, & 0 \leq x \leq 3 \\ 0, & \text { otherwise }\end{cases}
$$

is a probability density function also find $P(1 \leq x \leq 2)$
p.d.f is valid.

So n: $0 f(x) \geqslant 0$ if $c \geqslant 0$ also we must have $\int_{-\infty}^{\infty} f(x) d x=1$

$$
\begin{aligned}
& \int_{0}^{3}\left(\frac{x}{6}+c\right) d x=1 \\
& {\left[\frac{x^{2}}{6 x^{2}}+c x\right]_{0}^{3}=1} \\
& \left(\frac{3^{2}}{12}+c \cdot 3\right)-0=1 \\
& 3 \frac{9}{12}+3 c=1 \\
& \frac{3}{4}+3 c=1 \\
& 3 c=1-\frac{3}{4}=\frac{4-3}{4}=\frac{1}{4} \\
& 3 c=\frac{1}{4} \Rightarrow c=\frac{1}{12}
\end{aligned}
$$

Now $p(1 \leq x \leq 2)=\int_{1}^{2} f(x) d x$

$$
\begin{aligned}
& =\int_{1}^{2}\left(\frac{x}{6}+c\right) d x \\
& =\int_{1}^{2}\left(\frac{x}{6}+\frac{1}{12}\right) d x
\end{aligned}
$$

$$
p(16 x \leq 2)=\frac{1}{3}
$$

(3) Find the Constant k such that

$$
f(x)=\left\{\begin{array}{ll}
k x^{2}, & 0<x<3 \\
0, & \text { otherwise }
\end{array}\right. \text { is probatality }
$$

(1) $P C L<x$
(2) $p(x \leq 1)$
(3) $P(x>1)$
(4) mean
(5) Variance

Sol: probability density function is valid $f(x) \geqslant 0$ if $k \geqslant 0$.
also we must have $\int_{-\infty}^{\infty} f(x) d x=1$

$$
\begin{aligned}
& \int_{0}^{3} k x^{2} d x=1 \\
& k \int_{0}^{3} x^{2} d x=1 \\
& k\left[x^{3} / 3\right]_{0}^{3}=1
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\frac{x^{2}}{12}+\frac{1}{12} \cdot x\right]_{1}^{2} \\
& =\left(\frac{4}{12}+\frac{2}{12}\right)-\left(\frac{1}{12}+\frac{1}{12}\right) \\
& \text { (02) }=\frac{1}{12}\left[x^{2}+x\right]_{1}^{2} \\
& =\left(\frac{1}{3}+\frac{1}{6}\right)-\left(\frac{2}{12}\right) \\
& =\frac{1}{12}\left[\left(2^{2}+2\right)-(1+1)\right] \\
& =\frac{2+1}{6}-\frac{2^{1}}{126} \\
& =\frac{1}{12}[6-2] \\
& =\frac{3}{6}-\frac{1}{6} \\
& =\frac{1}{\sqrt{2} 3} \times 4^{1} \\
& =\frac{2}{6} \quad P(1 \leqslant x \leqslant 2)=1 / 3
\end{aligned}
$$

$$
\begin{gathered}
k[3 / 5-0]=1 \\
k\left[3^{2}\right]=1 \\
9 k=1 \\
k=\frac{1}{9}
\end{gathered}
$$

(i)

$$
\begin{aligned}
p(1<x<2) & =\int_{1}^{2} f(x) d x \\
& =\int_{1}^{2} k x^{2} d x=\int_{1}^{2} \frac{1}{9} x^{2} d x \\
& =\frac{1}{9}\left[\frac{x^{3}}{3}\right]_{1}^{2} \\
& =\frac{1}{9}\left[\frac{2^{3}}{3}-\frac{1}{3}\right] \\
& =\frac{1}{9}\left[\frac{8}{3}-\frac{1}{3}\right]=\frac{1}{9} \times \frac{7}{3} \\
& =\frac{7}{27}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& P(x \leq 1)=\int_{0}^{1} f(x) d x=\int_{0}^{1} \frac{x^{2}}{9} d x=\left[\frac{x^{3}}{27}\right]_{0}^{1} \\
& \quad=[1 / 27-0] \\
& P(x \leq 1)=1 / 27 / 1
\end{aligned}
$$

(iii)

$$
\begin{aligned}
p(x>1) & =\int_{1}^{3} f(x) d x=\int_{1}^{3} \frac{x^{2}}{9} d x=\left[\frac{x^{3}}{27}\right]_{1}^{3} \\
& =\left[\frac{3^{3}}{27}-\frac{1}{27}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\frac{27}{27}-\frac{1}{27}\right] \\
& =[1-1 / 27]
\end{aligned}
$$

$p(x>1)=\frac{26}{27}$
(iv)

$$
\begin{aligned}
& \text { mean }=\mu=\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{0}^{3} x \cdot \frac{x^{2}}{9} d x \\
& =\int_{0}^{3} \frac{x^{3}}{9} d x \\
& =\frac{1}{9} \int_{0}^{3} x^{3} \cdot d x=\frac{1}{9}\left[\frac{x^{4}}{4}\right]_{0}^{3} \\
& =\frac{1}{36}\left[3^{4}-0\right] \\
& =\frac{1}{36}(81) \\
& \mu=\frac{9}{4} \| \\
& \text { variance }=V=\int_{-\infty}^{\infty} x^{2} f(x) d x-(\mu)^{2} \\
& =\int_{0}^{3} x^{2} \cdot \frac{x^{2}}{9} d x-\left(\frac{9}{4}\right)^{2} \\
& =\int_{0}^{3} \frac{x^{4}}{9} d x-\frac{81}{16}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& =\left[\frac{x^{5}}{9 \times 5}\right]_{0}^{3}-\frac{81}{16} \\
& =\left(\frac{3^{5}}{45}-0\right)-\frac{81}{16} \\
& =\frac{81}{845}-\frac{81}{16} \\
& =\frac{81}{15}-\frac{81}{16}=\frac{81}{240}=\frac{27}{80} \\
& V=\frac{27}{80}
\end{aligned}
$$

(4) A random variable x has the following density function

$$
P(x)= \begin{cases}k x^{2}, & -3 \leqslant x \leqslant 3 \\ 0, & \text { elsewhere }\end{cases}
$$

Evaluate $K-\varepsilon$ find
(1) $P(1 \leq x \leq 2)$
(2) $P(x \leq 2)$
(3) $P(x>1)$

Sol: we mut have $0 p(x) \geqslant 0$ if $k \geqslant 0$

$$
\begin{aligned}
& \text { ie } \int_{-3}^{3} k x^{2} d x=1 \\
& k \int_{-\infty}^{\infty} p(x) d x=1 \\
& k x^{2} d x=1 \\
& k\left[x^{3} / 3\right]_{-3}^{3}=1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{3}\left[3^{3}-(-3)^{3}\right]=1 \\
& {[27-(-27)]=1} \\
& \frac{K}{3}[27+27]=1 \\
& \frac{k}{3}[-54]=1 \\
& 18 K=1 \\
& K=1 \\
& \text { (1) } p(1 \leq x \leq 2)=\int_{1}^{2} k x^{2} d x=\int_{1}^{2} \frac{1}{18} x^{2} d x \\
& =\frac{1}{18} \int_{1}^{2} x^{2} d x \\
& =\frac{1}{18}\left[\frac{x^{3}}{3}\right]_{1}^{2} \\
& =\frac{1}{18}\left[\frac{2^{3}}{3}-\frac{1}{3}\right] \\
& =\frac{1}{18}\left[\frac{8}{3}-\frac{1}{3}\right] \\
& =\frac{1}{18} \times \frac{7}{3} \\
& =\frac{7}{54 / /} \\
& P(x \leq 2)=\int_{-3}^{2} K x^{2} d x=\int_{-3}^{2} \frac{1}{18} x^{2} d x=\frac{1}{18} \int_{-3}^{2} x^{2} d x \\
& =\frac{1}{18}\left[\frac{x^{3}}{3}\right]_{-3}^{2} \\
& =\frac{1}{18}\left[2^{3}-\frac{(-3)^{3}}{3}\right]
\end{aligned}
$$

(2)

$$
\begin{aligned}
& =\frac{1}{18}\left[\frac{8}{3}-\frac{(-27)}{3}\right] \\
& =\frac{1}{18}\left[\frac{8}{3}+\frac{27}{3}\right] \\
& =\frac{1}{18} \times \frac{35}{3} \\
& =\frac{35}{54}
\end{aligned}
$$

0)

$$
\begin{aligned}
P(x & >1)
\end{aligned}=\int_{1}^{3} k x^{2} d x=\int_{1}^{3} \frac{1}{78} x^{2} d x
$$

(5) Find the CDF (cumulative dintribution function) foor paobability diplity function of random variable x.
(i) $f(x)= \begin{cases}6 x-6 x^{2} & , 0 \leq x \leq 1 \\ 0 & ; \text { otheraise }\end{cases}$
(ii) $f(x)= \begin{cases}\frac{x}{4} e^{-x / 2}, & 0<x<\infty \\ 0, & \text { otherwise }\end{cases}$
wis If $f(x)$ is the probability density function then $C \cdot d \cdot f=f(x)=\int_{-\infty}^{x} f(x) d x$
(2)

$$
\begin{aligned}
& F(x)=\int_{-\infty}^{x} f(x) d x \\
&=\int_{-\infty}^{0} f(x) d x+\int_{0}^{x} f(x) d x \\
&=0+\int_{0}^{x} f(x) d x \\
& F(x)=\int_{0}^{x}\left(6 x-6 x^{2}\right) d x \\
&=\left[6 \frac{x^{2}}{2}-\frac{6 x^{3}}{3}\right]_{0}^{x} \\
&=\left[3 x^{2}-2 x^{3}\right]_{0}^{x} \\
& F(x)=3 x^{2}-2 x^{3} \\
& \therefore C \cdot d \cdot f=3 x^{2}-2 x^{3} \text { if } 0 \leqslant x \leqslant 1 /
\end{aligned}
$$

(ii)

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} f(x) d x \\
& =\int_{-\infty}^{0} f(x) d x+\int_{0}^{x} f(x) d x \\
& =0+\int_{0}^{x} f(x) d x
\end{aligned}
$$

$$
=\int_{0}^{x} \frac{x}{4} e^{-x / 2} d x
$$

Apply bernoulli's rule.

$$
\left.\left.\left.\begin{array}{rl}
& =\frac{1}{4} \int_{0}^{x} x e^{-x / 2} d x \\
& =\frac{1}{4}\left[x \frac{e^{-x / 2}}{-1 / 2}-(1) e^{-x / 2}-1 / 2 x-1 / 2\right.
\end{array}\right]_{0}^{x}\right]_{0}^{x}\right] \text { } \begin{aligned}
& x \\
&=\frac{1}{4}\left[-2 x e^{-x / 2}-4 e^{-x / 2}\right. \\
&=\frac{1}{4}\left[\left\{-2 x e^{-x / 2}-4 e^{-x / 2}\right\}-\left\{0-4 e^{0}\right\}\right] \\
&=\frac{1}{4}\left[-2\left(x e^{-x / 2}+2 e^{-x / 2}\right)+4\right] \\
&=\frac{1}{4}\left[-2 e^{-x / 2}(x+2)+4\right] \\
&=-\frac{1}{2} e^{-x / 2}(x+2)+1 \\
&=-\frac{1}{2} e^{-x / 2} \cdot x+e^{-x / 2}+1 \\
& F(x)=1-\frac{x}{2} e^{-x / 2}-e^{-x / 2} \text { if } 0<x<c
\end{aligned}
$$

(6) A Contineous random variable has the digtribation function

$$
F(x)=\left\{\begin{array}{cc}
0, & x \leq 1 \\
c(x-1)^{4}, & 1 \leq x \leq 3 \\
1, & x>3
\end{array}\right.
$$

Find C and also the p.d.f
is

$$
\begin{aligned}
& \text { W.K.T p.d.f } f(x)=\frac{d}{d x}[F(x)] \\
& \therefore f(x)= \begin{cases}0 ; & x \leq 1 \\
H C(x-1)^{3} ; & 1 \leq x \leq 3 \\
0, & x>3\end{cases}
\end{aligned}
$$

of $(x) \geqslant 0$ for $c \geqslant 9$
Q we myst have. $\int_{-\infty}^{\infty} f(x) d x=1$

$$
\begin{aligned}
& \int_{1}^{3} f(x) d x=1, \int_{1}^{3} H C(x-1)^{3} d x=1 \\
& H C \int_{1}^{3}(x-1)^{3} d x=1 \\
& A C\left[\frac{(x-1)^{4}}{4}\right]_{1}^{3}=1 \\
& C\left[(x-1)^{4}\right]_{1}^{3}=1 \\
& C\left[(3-1)^{4}-(1-1)^{4}\right]=1 \\
& C\left[2^{4}-0\right]=1 \\
& C[16]=1 \\
& C=1 / 16 / 1
\end{aligned}
$$

(7) Find k so that the following function can serve as a p.d.f of a random variable $f(x)= \begin{cases}0 & \text { for } x \leq 0 \\ k x e^{-u x^{2}} & \text { for } x>0\end{cases}$

Sol ${ }^{n}$: we myst have $f(x) \geqslant 0$ and

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & \int_{-\infty}^{\infty} f(x) d x=1 \\
& \Rightarrow \int_{-\infty}^{0} f(x) d x+\int_{0}^{\infty} f(x) d x=1 \\
& \Rightarrow 0+\int_{0}^{\infty} f(x) d x=1
\end{aligned}
$$

$$
\therefore \int_{0}^{\infty} f(x) d x=1 \Rightarrow \int_{0}^{\infty} 1<x e^{-u x^{2}} d x=1
$$

$$
\Rightarrow k \int_{0}^{\infty} x e^{-4 x^{2}} d x=1
$$

put $4 x^{2}=t$

$$
\begin{aligned}
& \text { D.w.r. to } x \\
& 8 x d x=d t \\
& x d x=\frac{1}{8} d t
\end{aligned}
$$

when x varies from 0 to ∞ t also varies from 0 to ∞

$$
\begin{aligned}
& \Rightarrow k \int_{0}^{\infty} e^{-t} \frac{d t}{8}=1 \\
& \Rightarrow \frac{k}{8}\left[\frac{e^{-t}}{-1}\right]_{0}^{\infty}=1 \\
& \Rightarrow \frac{-k}{8}\left[e^{-t}\right]_{0}^{\infty}=1
\end{aligned}
$$

$$
\left.\begin{array}{c}
\Rightarrow \frac{-k}{8}[0
\end{array} \frac{1}{8}\right]=1
$$

(8) The kilometre run (in thous and of kms) without any sort of problem in reppect of a Certain vehicle is a random variable having p.d.f.

$$
f(x)= \begin{cases}\frac{1}{40} e^{-x / 40}, & x \geqslant 0 \\ 0, & x \leq 0\end{cases}
$$

Find the probability that vehicle is trouble free.
(1) atlecyt for 25.000 cms
(2) atmost for 25000 cms
(3) between 16000 to 32000 ccms

Son: Here x is the random Variable reporefenting kilometre in multiply of 1000 regarding trouble free rum by the vehicle
(1) To find $P(x \geqslant 25)$

$$
\begin{aligned}
p(x \geqslant 25) & =1-p(x<25) \\
p(x \geqslant 25) & =1-\int_{0}^{25} 1 / 40 e^{-x / 40} d x \\
& \left.\left.=1 \frac{1}{40}\right]_{-1 / 42}^{25} e_{0}^{-x / 40}\right]_{0}^{25} \\
& =1+\left[e^{-x / 40}\right]_{0}^{25}
\end{aligned}
$$

$$
\begin{aligned}
& =1+\left[e^{-25 / 10}-e^{0}\right] \\
& =1+\left[e^{-5 / 8}-1\right] \\
& =e^{-5 / 8}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& P(x \leq 25) \\
& P(x \leq 25)=\int_{0}^{25} \frac{1}{40} e^{-x / 40} d x \\
&=\frac{1}{40}\left[\frac{e^{-x / 40}}{-4 / 40}\right]_{0}^{25} \\
&=-\left[e^{-2 / 40}-e^{0}\right] \\
&=-\left[e^{-5 / 8}-1\right] \\
&=-e^{-5 / 8+1}
\end{aligned}
$$

$$
P(x \subseteq 15)=0.4647 /
$$

(ii)

$$
\begin{aligned}
P(16 \leq x \leq 32) & =\int_{16}^{32} \frac{1}{40} e^{-x / 40} d x \\
& =\frac{1}{49}\left[\frac{e^{-x / 40}}{-x / 40}\right]_{10}^{32} \\
& =-\left[e^{-x / 40}\right]_{16}^{32} \\
& =-\left[e^{-32 / 40}-e^{-16 / 40}\right] \\
& =-\left[e^{-4 / 5}-e^{-2 / 5}\right] \\
& =0.221 / 4
\end{aligned}
$$

(4) If x is an exponential variate with mean 3 find (1) $p(x>1)$

$$
\text { Q } p(x<3)
$$

sori. p.d.f of the exponential dintribution is given by $f(x)= \begin{cases}\alpha e^{-\alpha x} & , 0<x<\infty \\ 0, & \text { otherwine }\end{cases}$ mean of exponential dintribution is

$$
\mu=\frac{1}{\alpha}
$$

Given $\mu=3$

$$
\frac{1}{\alpha}=3 \Rightarrow \alpha=1 / 3
$$

hence $f(x)=\left\{\begin{array}{cl}\frac{1}{3} e^{-\frac{1}{3} x}, & 0<x<c 0 \\ 0, & \text { otherwine }\end{array}\right.$
Q

$$
\begin{aligned}
P(x>1) & =1-P(x \leq 1) \\
& =1-\int_{0}^{1} f(x) d x \\
& =1-\int_{0}^{1} \frac{1}{3} e^{-\frac{1}{3}} d x \\
& =1-\frac{1}{3}\left(\frac{e^{-3} x}{-1 / 1 / 3}\right. \\
& =1+\left[e^{-1 / 3}-e^{0}\right] \\
& =1 x+e^{-1 / 3}-1 \\
& =e^{-1 / 3}=0.7165
\end{aligned}
$$

(2)

$$
\begin{aligned}
& P(x<3)=\int_{0}^{3} f(x) d x=\int_{0}^{3} 1 / 3 e^{-x / 3} d x \\
& p(x<3) \\
&=1 / 3\left[\frac{e^{-x / 3}}{-1 / 3}\right]_{0}^{3} \quad(=0.632 x \\
&=-\left[e^{-1}-e^{0}\right]=-\left[e^{-1}-1\right]=1-e^{-1}
\end{aligned}
$$

(10) In a Geatain town the duration of a shower is exponentially distributed with mean 5 minutes. what y the Probability that a shower will last for (7) 10 minute or more
(2) Lessthan 10 minutes
(3) Between 10 \& 12 minutes

Son: Given $\mu=-5$

$$
\begin{aligned}
& \mu=\frac{1}{\alpha}, \text { mean } \infty \text { exponential } \\
& \therefore \frac{1}{\alpha}=5 \Rightarrow \alpha=\frac{1}{5}=0.2
\end{aligned}
$$

probability density function of exponential distribution is given by

$$
\begin{aligned}
& f(x)= \begin{cases}\alpha e^{-\alpha x}, & x>0 \\
0, & \text { otherroije }\end{cases} \\
& f(x)=0.2 e^{-0.2 x}
\end{aligned}
$$

we have to find (1)

$$
\begin{aligned}
p(x \geqslant 10) & =\int_{10}^{\infty} f(x) d x \\
& =\int_{10}^{\infty} 0 \cdot 2 e^{-0.2 x} d x \\
& =0.2\left[e^{-0.2 x}\right]_{10}^{-0.2} \\
& =-\left[e^{-\infty}-e^{-0.2 \times 10}\right]
\end{aligned}
$$

ARUN'S

$$
\begin{aligned}
& =\int_{10}^{\infty} 0.2 e^{-0.2 x} d x \\
& =0.2\left[\frac{e^{-0.2 x}}{-0.2}\right]_{10}^{10} \\
& =-\left[e^{-\infty}-e^{-0.2 \times 10}\right] \\
P(x \geqslant 10) & =-\left[0-e^{-2}\right]=e^{-2}=0.1353
\end{aligned}
$$

(i)

$$
\begin{aligned}
P(x<10) & =\int_{0}^{10} f(x) d x \\
& =\int_{0}^{10} 0.2 e^{-0.2 x} d x \\
& =0.2\left[\frac{e^{-0.2 x}}{-0.2}\right]_{0}^{10} \\
& =-\left[e^{-0.2 \times 10}-e^{0}\right] \\
& =-\left[e^{-2}-1\right] \\
& =1-e^{-2} \\
& =0.8647 / /
\end{aligned}
$$

(iii)

$$
\begin{aligned}
P(10<x<12) & =\int_{10}^{12} f(x) d x \\
& =\int_{10}^{12} 0.2 e^{-0.2 x} d x \\
& =0.2\left[\frac{e^{-0.2 x}}{-0.2}\right]_{10}^{12} \\
& =-\left[e^{-0.2 \times 12}-e^{-0.210}\right] \\
& =-\left[e^{-2 \cdot 4}-e^{-2}\right]
\end{aligned}
$$

$$
=0.0446
$$

(iii) The length of telephone conversation in a booth has been an exponential distribution and found on an averoge to be 5 minutes. find the probability that a random. Call made from this booth (1) Ends lestithan 5 minutes
(3) bid 5 and 10 minutes
son: Exponential distribution of mean

$$
\text { y } \quad d=\frac{1}{\alpha}
$$

Given $\mu=5$

$$
\frac{1}{\alpha}=5 \Rightarrow \alpha=\frac{1}{5}=0.2 H
$$

p.d.f of exponential distribution is given by $f(x)= \begin{cases}d e^{-\alpha x} & , x>0 \\ 0, & \text { otherwise }\end{cases}$

$$
\begin{aligned}
& f(x)=\alpha e^{-\alpha x} \\
& f(x)=0.2 e^{-0.2 x}
\end{aligned}
$$

(1)

$$
\begin{aligned}
P(x<5) & =\int_{0}^{5} f(x) d x \\
& =\int_{0}^{5} 0.2 e^{-0.2 x} d x \\
& =0.2 \int_{0}^{5} e^{-0.2 x} d x \\
& =0.2\left[\frac{e^{-0.2 x}}{-0.2}\right]_{0}^{5} \\
& =-\left[e^{-0.2 \times 5}-e^{-0.2 \times 0}\right] \\
& =-\left[e^{-1}-e^{0}\right]
\end{aligned}
$$

$$
\begin{align*}
& =-\left[e^{-1}-1\right] \tag{a}\\
& =0.6821
\end{align*}
$$

(2)

$$
\begin{aligned}
P(5 \Delta x<10) & =\int_{5}^{10} f(x) d x \\
& =\int_{5}^{10} 0 \cdot 2 \cdot e^{-0.2 x} d x \\
& =0.2 \int_{5}^{10} e^{-0.2 x} d x \\
& =0.2\left[e^{-0.2 x}\right]_{5}^{10} \\
& \therefore\left[e^{-0.2 \times 10}-e^{-0.2 \times 5}\right] \\
& =-\left[e^{-2}-e^{-1}\right] \\
& =0.2325
\end{aligned}
$$

Do yournet f
If x is an exponential variate with mean 5 , evaluate
(1) $P(0<x<1)$

Ans: 0.1813
(2) $P(-\infty<x<10): 0.8647$
(3) $P(x \leq 0$ or $x \geqslant 1): 0.8187$

$$
\left.\begin{array}{rl}
\lfloor p(x \leq 0) & +p(x \geqslant 1) \\
& \Rightarrow 0
\end{array}\right)+\int_{1}^{\infty} f(x) d x
$$

(12) Find k so that $f(x)=\left\{\begin{array}{l}R x e^{-x}, o(x e l) \\ 0, \text { othenwine }\end{array}\right.$ i) a p.d.f find the meam.

Soin: $f(x) \geqslant 0$ if $k \geqslant 0$
we must have $\int_{-\infty}^{\infty} f(x) d x=1$

$$
\begin{aligned}
\int_{0}^{1} k x e^{-x} d x & =1 \\
k \int_{0}^{1} x e^{-x} d x & =1
\end{aligned}
$$

apply Bernoullis aule

$$
\begin{aligned}
& K\left[x \frac{e^{-x}}{-1}-e^{-x}\right]_{0}^{1}=1 \\
& K\left[\left\{\frac{e^{-1}}{-1}-e^{-1}\right\}-\left\{0-e^{0}\right\}\right]=1 \\
& K\left[-1 / e^{-1} / e+1\right]=1 \\
& K[-2 / e+1]=1 \\
& K[1-2 / e]=1 \\
& K=\frac{1}{1-2 / e}=\frac{e}{e-2} \\
& K=\frac{e}{e-2}
\end{aligned}
$$

$$
\begin{aligned}
\mu & =\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{0}^{1} x \cdot \frac{e}{e-2} x e^{-x} d x \\
& =\frac{e}{e-2} \int_{0}^{1} x^{2} e^{-x} d x \\
& =\frac{e}{e-2}\left[x^{2} \frac{e^{-x}-2}{-1}-2 \frac{e^{-x}}{(-1)(-1)}+2 \frac{e^{-x}}{(-1)(-1)(-1)}\right] \\
& =\frac{e}{e-2}\left[\left\{\frac{e^{-1}}{-1}-2 \frac{e^{-1}}{1}+2 \frac{e^{-1}}{-1}\right\}-\{0-0-2\right. \\
& =\frac{e}{e-2}\left[-\frac{e^{-1}}{2}-4 e^{-1}+2\right] \\
& =\frac{e}{e-2}[2] \\
& =\frac{e}{e-2}\left[2-5 e^{-1}\right] \\
& =\frac{e}{e-2}\left[\frac{2 e-5]}{e}\right] \\
& \left.=\frac{2 e-5}{e-2} 1\right]
\end{aligned}
$$

(8) Is the following function a p.d.f?

$$
f(x)= \begin{cases}e^{-x}, & x \geqslant 0 \\ 0, & x<0 \\ \text { determine the }\end{cases}
$$

of so determine the probability that the variate having this density will fall in the interval $(1,2)$.

Son: we observe $f(x) \geqslant 0$. also we mat have $\int_{-\infty}^{\infty} f(x) d x=1$

$$
\begin{aligned}
& \int_{-\infty}^{10} f(x) d x=\int_{-\infty}^{0} f(x) d x+\int_{0}^{\infty} f(x) \\
&=0+\int_{0}^{\infty} e^{-x} d x \\
&=\left[-e^{-x}\right]_{0}^{\infty} \\
&=-[0-1] \\
&=1 / \\
& \therefore f(x) \text { y a p.d.f. }
\end{aligned}
$$

Normal Distribution
The continuous probability distribution having probability density function $f(x)$ given by $f(x)=\frac{1}{\alpha \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$ where $-\infty<x<\infty,-\infty<\mu<\infty$ and $\sigma>0$ is known as normal distribution. evidently $f(x) \geqslant 0 \rightarrow w^{2}$ a bid. f

$$
\int_{-\infty}^{\infty} f(x) d x=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-(x-\mu)^{2} / \partial \sigma^{2}} \cdot d x
$$

put $t=\frac{x-\mu}{\sqrt{2} \sigma}$ or $x=\mu+\sqrt{2} \sigma t$, we have $d x=\sqrt{2} \sigma d t$ t also varies from $-\infty$ to ∞ hence $\int_{-\infty}^{\infty} f(x) d x=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-t^{2}} \sqrt{2} \sigma d t$

$$
\begin{aligned}
& =\frac{1}{\phi \sqrt{2} \sqrt{\pi}} \cdot \sqrt{2} \int_{-\infty}^{\infty} e^{-t^{2}} \cdot \sigma d t \\
& =\frac{1}{\sqrt{\pi}} \times 2 \int_{0}^{\infty} e^{-t^{2}} d t
\end{aligned}
$$

But $\int_{0}^{\infty} e^{-t^{2}} d t=\frac{\sqrt{\pi}}{2}$ by gamma functions

$$
\text { ARUMS } \int_{-\infty}^{\infty} f(x) d x=\frac{2}{\sqrt{\pi}} \times \frac{\sqrt{\pi}}{2}=1 /
$$

both the conditions sativfigs
\therefore It is a probability demily pA
Mean \& Dtandard deviation of Noomal dytmibution

$$
\begin{align*}
\text { mean }(\mu) & =\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{-\infty}^{\infty} x \frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} x e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x- \tag{1}
\end{align*}
$$

put $t^{2}=\frac{(x-\mu)^{2}}{2 \sigma^{2}}$

$$
\begin{gathered}
t=\frac{(x-\mu)}{\sqrt{2} \sigma} \\
\sqrt{2} \sigma t=x-\mu \\
x=\mu+\sqrt{2} \sigma t \\
0 \cdot 0 \cdot r \text { to } x \\
d x=0+\sqrt{2} \sigma \cdot d t \\
d x=\sqrt{2} \sigma d t
\end{gathered}
$$

$$
\begin{aligned}
&(1) \Rightarrow \int_{-\infty}^{\infty} x f(x) d x=\frac{1}{\phi \sqrt{2 \pi}} \int_{-\infty}^{\infty} x e^{-t^{2}} \sqrt{2} t d t \\
&=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty}(x d t+\sqrt{2} \sigma t) e^{-t^{2}} d t \\
& \underbrace{\infty}_{\substack{\infty \\
\text { ARUS } \\
\text { OND }}}=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} M e^{-t^{2}} d t+\sqrt{2 \sigma} \int_{-\infty}^{\infty} t e^{-t^{2}} d t
\end{aligned}
$$

$$
=\frac{\mu}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^{2}} d t+\frac{\sqrt{2} \sigma}{\sqrt{\pi}} \int_{-\infty}^{\infty} t e^{-t^{2}} d t
$$

$$
\begin{aligned}
&=\frac{\mu}{\sqrt{\pi}} \times 2 \int_{0}^{\infty} e^{-t^{2}} d t+\sigma \frac{\sqrt{2}}{\sqrt{\pi}} \int_{-\infty}^{\infty} t e^{-t^{2}} d t \\
& V^{1} \\
& \text { even function } \text { odd function }
\end{aligned}
$$

$$
\begin{aligned}
& \text { even function } \\
&= \frac{2 \mu}{\sqrt{\pi}} \int_{0}^{\infty} e^{-t^{2}} d t+0 \\
&= \frac{2 \mu}{\sqrt{n}} \times \frac{\frac{f \pi}{2}}{2} \\
& \therefore \text { mean }=\mu
\end{aligned}
$$

odd function

$\sigma^{2}=\int_{-\infty}^{\infty} \frac{(x-\mu)^{2}}{\sigma(g \pi} e$
put $t^{2}=\frac{(x-\mu)^{2}}{2 \sigma^{2}}$

$$
\begin{aligned}
& t=\frac{x-\mu}{\sqrt{2} \sigma} \\
& \sqrt{2} \sigma=x-\mu \\
& x=\mu+\sqrt{2} \sigma t \\
& d x=\sqrt{2} \sigma d t
\end{aligned}
$$ I alpo varies from $-\infty$ to $d o$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} 2 t^{2} \sigma^{2} \frac{1}{t \sqrt{2} \pi} e^{-t^{2}} \sqrt{2} d d t \\
& =2 \sigma^{2} \int_{-\infty}^{\infty} t^{2} \frac{1}{\sqrt{\pi}} e^{-t^{2}} d t \\
& =\frac{2 \sigma^{2}}{\sqrt{\pi}} \int_{-\infty}^{\infty} t^{2} e^{-t^{2}} d t \\
& =\frac{2 \sigma^{2}}{\sqrt{\pi}} \times 2 \int_{0}^{\infty} t^{2} e^{-t^{2}} d t
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fouiance }= \frac{2 \sigma^{2}}{\sqrt{\pi}} \times \int_{0}^{\infty} \pm\left(2 t e^{-t^{2}}\right) d t \\
& u=t \quad v=2 t e^{-t^{2}} \\
& \text { w.k.T } \int u v d t=u \int v d t-\iint v \cdot d t \cdot u^{\prime} d t \\
& \quad \int v \cdot d t=\int 2 t e^{-t^{2}}=2 t \cdot \frac{e^{-t^{2}}}{-2 t}=-e^{-t^{2}}
\end{aligned}
$$

Variance $=\frac{2 \sigma^{2}}{\sqrt{\pi}}\left\{\left[\int_{0}^{\infty} t\left(-e^{-t^{2}}\right)\right]_{0}^{\infty}-\int_{0}^{-2 t}-\left(e^{-t^{2}}\right) 1 \cdot d t\right\}$
$=\frac{2 \sigma^{2}}{\sqrt{\pi}}\left\{0-0+\int_{0}^{\infty} e^{-t^{2}} \cdot d t\right\}$

$$
\begin{aligned}
& =\frac{2 \sigma^{2}}{\sqrt{\pi}} \int_{0}^{\infty} e^{-t^{2}} d t \\
& =\frac{2 \sigma^{2}}{2} \times \frac{\sqrt{h}}{2}
\end{aligned}
$$

$=\sigma^{2}$

$$
\text { Variance }=\sigma^{2}
$$

hence we can say that variance/s.D of normal distribution is equal to the variance /S.D of the given distribution
coted: The graph of the probability function $f(x)$ is a bell shaped curve symmetaical about the line $x=$ tl \& y called normal probability curve. The shape of the ourve If

The line $x=111$ dividy the total area under the curve which y iequal to 1 into two equal pants. The area to the right as well as to the left op the line $x=$ ll is 0.5
NOTEQ: $\phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2} e^{-z^{2} / 2} d z$
repregents the area under \&tandard normal cuave from p to z
(1) $\int_{-\infty}^{\infty} \phi(z) d z=1$

Q $\int_{-\infty}^{0} \phi(z) d z=\int_{0}^{\infty} \phi(z) d z=1 / 2$
(2) $P(-\infty \leq z \leq \infty)$ or $P(z \geqslant 0)=1 / 2$

$$
\text { also } P(-\infty<z<21)=P(-\infty<z \leq 0)+P(2 \cos)
$$

(4) $p\left(z<z_{1}\right)=0.5+\phi\left(z_{1}\right)$

ARUN'S
(el) $p\left(z>z_{2}\right)=p(z \geqslant 0)-p\left(\cos z<z_{2}\right)$ i.e $p\left(z>z_{2}\right)=0.5-p\left(z_{2}\right)$
problems
(1) Find the area under the standard normal curve $b / w \quad z=0$ \& 1.55

Sol:

$$
\begin{aligned}
& =\frac{1}{\sqrt{2 \pi}} \int_{D_{1}}^{z_{2}} e^{-z^{2} / 2} d z \\
& =\frac{1}{\sqrt{2 \pi}} \int_{0}^{1.55} e^{-2 / 2} d z \\
& =\phi(1.55) \\
& =0.4394
\end{aligned}
$$

(2) Find the area under the Stand and normal curve between $z=-0.86 \& z=0$

$$
\begin{aligned}
\text { d(ai) area } & =\frac{1}{\sqrt{2 \pi}} \int_{+\infty}^{z_{2}} e^{-z^{2} / 2} d z \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-0.86}^{0} e^{-2^{2} / 2} d z \\
& =1 / \sqrt{2 \pi} \int_{0}^{0.86} e^{-2 / 2} d z \\
& =\phi(0.86)
\end{aligned}
$$

prop
$r(-0.86 \leq 2 \leq 0)=0.30511$
(3) Find the area of standard normal curve between $z=-0.44 \& z=1.76$

Sol no

$$
\begin{aligned}
\text { Area } & =\frac{1}{\sqrt{2 \pi}} \int_{21}^{2 x} e^{-z^{2} / 2} d z \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-0.44}^{1.76} e^{-z^{2} / 2} d z \\
& =\frac{1}{\sqrt{2 \pi}}\left[\int_{-0.44}^{0} e^{-z^{2} / 2} d z+\int_{0}^{1.76} e^{-z^{2} / 2} d z\right\} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{0}^{0.44} e^{-z^{2} / 2} d z+\frac{1}{\sqrt{2 \pi}} \int_{0}^{1.76} e^{-z^{2} / 2} d z \\
& =\phi(0.44)+\phi(1.76) \\
& =0.17003+0.460 .8 \\
& =0.63083
\end{aligned}
$$

Do yourself
(i) $z=0.57$ to 2.49
$800^{n 0}$

$$
\begin{aligned}
\text { Required area } & =(\text { Area between } z=0 \text { to } 2.49) \\
& - \text { (Area } b / \omega \quad z=0 \text { to } 0.57) \\
& =\phi(2.49)-\phi(0.57) \\
& =0.4936-0.2157 \\
= & 0.2779 / f
\end{aligned}
$$

(5) Find the area of stand and normal curve to right op $z=-1.96$
SOn:

Required Area $a=$ (Area between $z=-1.96$ to 0), t (Area to right op $z=0$)

$$
\begin{aligned}
&=(\text { Area b/w } z=0 \text { to } 1.96)+0.5 \text { by bymm } \\
&=\phi(1.96)+0.5 \\
&=0.4750+0.5 \\
&=0.9750 \\
& P(z \geqslant 1.96)=0.9750
\end{aligned}
$$

(6) Evaluate the following probabilities with the help of normal probability tably.

$$
\begin{aligned}
& \text { (4) } p(z \geq 0.85) \\
& \text { (2) } p(-1.64 \leq z \leq-0.88) \\
& \text { (3) } p(z \leq-2.43) \\
& \text { (4) } p(\mid z 1 \leq 1.94)
\end{aligned}
$$

Soln: (1) P $(z \geqslant 0.85)$

$$
\begin{aligned}
p(z \geqslant 0.85) & =p(z \geqslant 0)-p(0.2 \leq 085) \\
& =0.5-\phi(0.85) \\
& =0.5-0.30234 \\
& =0.1977
\end{aligned}
$$

(2) $P(-1.6 u \leq z \leq-0.88)$

$$
\begin{aligned}
P(-1.64 \leqslant z & \leqslant-0.88)=P(0.88 \leqslant z \leqslant 1.64) \\
& =p(0 \leqslant z \leqslant 1.64)-p(0 \leqslant z \leqslant 0.88) \\
& =\phi(1.64)-\phi(0.88) \\
& =0.4495-0.31057 \\
& =0.1389 / \mu
\end{aligned}
$$

$$
\begin{aligned}
p(z \leq-2.43) & =p(z \geqslant 2.43) \\
& =p(z \geqslant 0)-p(z \leq 2.43) \\
& =0.5-\phi(2.43) \\
& =0.5-0.4925 \\
& =0.0075
\end{aligned}
$$

(4)

$$
\begin{aligned}
P(\mid z 1 \leqslant 1.9 u) & =P(-1.9 u \leqslant z \leqslant 1.94) \\
& =P(-1.9 u \leqslant z \leqslant 0)+P(0 \leqslant z \leqslant 1.94) \\
& =P(0-z \leqslant 1.9 u)+P(0 \leq z \leq 1.94) \\
& =\phi(1.94)+\phi(1.9 u) \\
& =2 \phi(1.94) \\
& =2 \times 0.47381 \\
& =0.94762 /
\end{aligned}
$$

(3) If x y a normal variate with? mean 30 \& standard deviation 5 Find the probability that
(1) $26 \leq x \leq 40$
(8) $x \geqslant 45$

Son: we have standard normal variate

$$
z=\frac{x-\mu}{\sigma}=\frac{x-30}{5}
$$

(4) To find $P(26 \leqslant x \subseteq 40)$

If $x=26 \quad z=-0.8 ; \quad$ If $x=40, z=2$

$$
\begin{aligned}
\therefore P(-\theta .8 \leq z \leq 2)= & P(-0.8 \leq z \leq 0)+ \\
& P(0 \leq z \leq 2) \\
= & P(0 \leq z \leq 0.8)+P(0 \leq z \leq 2) \\
= & \phi(0.8)+\phi(2) \\
= & 0.28814+0.47725 \\
= & 0.76539
\end{aligned}
$$

(2) $P(x \geqslant 45)$

If $x=45, z=3$ hence we have to find $P(z \geqslant 3)$

$$
P(z \geqslant 3)=P(z \geqslant 0)-P(z \leq 3)
$$

(6) $p(0 \leq 2 \leq 3)$

$$
\begin{aligned}
& =0.5-\phi(3) \\
& =0.5-0.4987 \\
& =0.0013
\end{aligned}
$$

Doyournelf
(4) If x y normally distributed with mean 128 SiD 4 , find the following
(4) $P(x \geqslant 20)$
(2) $P(x \leq 20)$
(4) The marks of 1000 Students in an examination follows a normal distribution with mean 70 \& S.D S. Find the no. If Students whose marie will be
(1) (ellthan 65 (2) morethan 75 (2) b/w $65 \& 75$

Sol: Let x represents the maris of
students
By data $\mu=70, \sigma=5 \quad z=\frac{x-\mu}{\sigma}$

$$
z=\frac{x-70}{5}
$$

(1) If $x=65, z=-1$
we have to find $P(z<-1)$

$$
\begin{aligned}
p(z<-1) & =p(z>1) \\
& =p(z \geqslant 0)-p(0<z<1) \\
& =0.5-\phi(1) \\
& =0.5-0.3413 \\
& =0.1587 /
\end{aligned}
$$

No/. Of Students scoring lesfthan 65 mare,

$$
\begin{aligned}
& =1000 \times 0.1587 \\
& =158.7 \\
& \approx 159
\end{aligned}
$$

(11) If $x=75, z=1$, we have to find

$$
\begin{aligned}
& P(z>1) \\
& P(z>1)=P(z \geqslant 0)-P(0<z<1) \\
&=0.5-\phi(1) \\
&=0.5-0.3413 \\
&=0.1587 / 1
\end{aligned}
$$

\therefore Nol: of students scoring morethan 75 marcs $=1000 \times 0.1587=158.7 \mathrm{y} 159 \mathrm{p}$
(iii) we have to find $P(650 x<75)$ If $x=65 \quad z=-1$, If $x=75, z=1$ hence

$$
\begin{aligned}
P(-1<z \leqslant 1) & =P(-1<z<0)+P(0<z \leqslant 1) \\
& =P(0<z<1)+P(0<z<1) \\
& =2 P(0<z<1) \\
& =2 \phi(1) \\
& =2(0.3413) \\
& =0.6826
\end{aligned}
$$

No,. of Students scoring maris b/w

$$
\begin{aligned}
65 \& 75 & =1000 \times 0.6826 \\
& =682.6 \\
& \text { y } 683
\end{aligned}
$$

(3) In a test on electric bulbs, it was found that the life, time of a particular brand was dintributed normally with an
average life of 2000 hrg \& S.D of 60 hros If a firm purchayes 2500 bulby find the no\%. of bulbs that are dively to layt for (1) morethan 2100 hrg
(2). Lellthan 1950hm?
(2) b/w 1900.to 2100 has

So1: By data $\mu=2000, \sigma=60$.

$$
\text { S.D.V. } z=\frac{x-\mu}{\sigma}=\frac{x-2000}{60}
$$

(1) To find $P(x>2100)$.

$$
\begin{aligned}
& \text { If } x=2100 \quad z=\frac{2100-2000}{60}=\frac{100}{60}=1.67 \\
& P(x>2100)=P(z>1.67) \\
&=P(z \geqslant 0)-P(0<z<1.67) \\
&=0.5-\phi(1.67) \\
&=0.5-0.4525 \\
&=0.0475 / /
\end{aligned}
$$

No\%. of bulbs that are dikely to layt for morethan 2100 hm is 2500×0.0475

$$
=118.75 \approx 119
$$

(2) To find $P(x<1950)$

If $x=1950, z=-5 / 6=-0.83$

$$
\begin{aligned}
P(x<1950) & =P(z<-0.8 .3) \\
& =P(z>0.83) \\
& =P(z \geqslant 0)-P(0<z<0.83) \\
& =0.5-\phi 10.83) \\
& =0.5-0.2967 \\
& =0.2033
\end{aligned}
$$

No\% of bulbs that are likely to last for less than 1950 hay is 2500×0.2033

$$
\begin{aligned}
& =508.25 \\
& \approx 508 / /
\end{aligned}
$$

(3) To find $P(1900<x<2100)$

If $x=1900, z=-1.67 \&$ if $x=2100$

$$
z=1.67
$$

$$
P(1900<x<2100)=P(-1.67<z<1.67)
$$

$$
=P(-1.67<z<0)+P(0<z<1.67)
$$

$$
=P(0<z<1.67)+P(0<z<1.67)
$$

$$
=\phi(1.67)+\phi(1.67)
$$

$$
=2 \phi(1.67)
$$

$$
=2 \times 0.45254
$$

$$
=0.90508
$$

No/. of bulbs that are lively to last between 1900 \& 2100 hrs

$$
\begin{aligned}
& =2500 \times 0.90508 \\
& =2222.7 \\
& \approx 2263
\end{aligned}
$$

MODULE-H CURVE FITTING
fitting of straight line $y=a+b x$ and $y=a x+b$

$$
\begin{array}{rlrl}
y & =a+b x & y & =a x+b \\
\Sigma y & =n a+b \Sigma x & \Sigma y=a \Sigma x+n b \\
\Sigma x y & =a \Sigma x+b \Sigma x^{2} & \Sigma x y=a \Sigma x^{2}+b \Sigma x
\end{array}
$$

fitting of parabola $y=a+b x+c x^{2}$ and $y=a x^{2}+b x+c$

$$
\begin{array}{lrl}
y=a+b x+c x^{2} & y & =a x^{2}+b x+c \\
\Sigma y=n a+b \Sigma x+c \Sigma x^{2} & \Sigma y & =a \Sigma x^{2}+b \Sigma x+n c \\
\Sigma x y=a \Sigma x+b \Sigma x^{2}+c \Sigma x^{3} & \Sigma x y & =a \Sigma x^{3}+b \Sigma x^{2}+c \Sigma x \\
\Sigma x^{2} y=a \Sigma x^{2}+b \Sigma x^{3}+c \Sigma x^{4} & \Sigma x^{2} y=a \Sigma x^{4}+b \Sigma x^{3}+c \Sigma x^{2}
\end{array}
$$

fitting of curves of the form $y=a b^{x}, y=a x^{b}, y=a e^{b x}$

$$
y=a b^{x}
$$

\log on BS

$$
\begin{aligned}
& \log _{e} y=\log _{e}\left(a b^{x}\right) \\
& \log _{e} y=\log _{e} a+\log _{e} b^{x} \\
& \log _{e} y=\log _{e} a+x \log _{e} b \\
& y=A+B x \rightarrow \text { (1) } \\
& y=\log _{e} y \quad A \\
& B=\log _{e} a \\
&=\log _{e} b \quad x=x \\
& \Sigma y=n A+B \Sigma x \rightarrow(2) \\
& \Sigma x y=A \Sigma x+B \Sigma x^{2}+(3) \\
& \log _{e} a=A \Rightarrow a=\varepsilon^{A} \\
& \log _{e} b=B \Rightarrow b=\varepsilon^{B} \\
& y=a b^{x}
\end{aligned}
$$

$$
y=a e^{b x}
$$

log on BS

$$
\begin{aligned}
\log _{e} y & =\log _{e} a e^{b x} \\
\log _{e} y & =\log _{e} a+\log _{e} e^{b x} \\
\log _{e} y & =\log _{e} a+b x \log _{e} e \\
\log _{e} y & =\log _{e} a+b x \\
y & =A+b x \\
y & =\log _{e} y \quad A=\log _{e} a \quad \& a=b^{r} \\
\Sigma y & =n A+b \Sigma x \\
\Sigma x y & =A \Sigma x+b \Sigma x^{2}
\end{aligned}
$$

$$
y=a x^{b}
$$

log on B3

$$
\begin{aligned}
& \log _{e} y=\log _{e} a x^{b} \\
& \log _{e} y=\log _{e} a+b \log _{e} x \\
& y=A+b x
\end{aligned}
$$

$$
y=\log _{e} y \quad A=\log _{e} a \quad x=\log _{e} x
$$

coefficient of corelation and equation of lines of reareclon
co- relation coefficient $r=\frac{a_{x}{ }^{2}+a_{y}{ }^{2}-a_{x y}^{2}}{2 a_{x} a_{y}}$

$$
\begin{array}{ll}
\bar{x}=\frac{\Sigma x}{n} \quad \bar{y}=\frac{\Sigma y}{n} & \bar{z}=\frac{\Sigma z}{n} \quad \text { where } \quad z=x-y \\
a_{x}^{2}=\frac{\sum x^{2}}{n}-(\bar{x})^{2} & r_{y}^{2}=\frac{\Sigma y^{2}}{n}-(\bar{y})^{2} \quad a_{z}{ }^{2}=\frac{\Sigma z^{2}}{n}-(\bar{z})^{2} \\
r=\frac{a_{x}^{2}+a_{y}^{2}-a_{x y}^{2}}{2 a_{x} q_{y}} & y-\bar{y}=r \frac{n_{y}}{a_{x}}(x-\bar{x}) \\
& x-\bar{x}=r \frac{q_{x}}{a_{y}}(y-\bar{y})
\end{array}
$$

Regremion and coefficient of corelation
Find $\bar{x} \bar{y}$

$$
\begin{array}{ll}
x=x-\bar{x}, y=y-\bar{y}, & x y, x^{2}, y^{2} \\
y=\frac{\sum x y}{\sum x^{2}} \cdot x & \gamma= \pm \sqrt{((0-\varepsilon f f \text { of } x)(1} \\
y-\bar{y}=\frac{\sum x y}{\sum x^{2}}(x-\bar{x}) & r=\frac{\sum x y}{\sqrt{\sum x^{2}} \sqrt{\sum y^{2}}} \\
x=\frac{\sum x y}{\sum y^{2}} \cdot y & \\
x-\bar{x}=\frac{\sum x y}{\sum y^{2}}(y-\bar{y}) &
\end{array}
$$

In this topic we discuss the method of finding a specific relation $y=f(x)$ for the data to latisfy as accurately as polcible and mech as equation is called the bet t fitting equation or the a curve of but fit.
The method is called as the method of least squares described as follows.
suppose $y=f(x)$ is an approximate relation that fits into a gir - en data $\left(x_{i}, y_{i}\right)_{i}=1,2,3 \ldots, n$ then $y_{i}^{\prime} \rho$ are called the observed values and $y_{i}=f\left(x_{i}\right)$ are called the expected values. Their differ - Hence $R_{i}=y_{i}-y_{i}$ are called the recidual or estimate errors. fitting of a straight line $y=a+b x$
consider a set of n given values (x, y) for fitting the straight line $y=a+b x$ where a and b are parameters to be determine Normal equations for fitting the etroight line $y=a+b x$

$$
\begin{array}{rlrl}
y=a+b x-y \\
\Sigma y=n a+b \Sigma x+(0) & \sum_{1}^{n} a & =a+a+a_{\ldots \ldots} \tag{2}\\
x y x \text { in (i) } & & =n a
\end{array}
$$

$$
x y=x a+b x^{2}
$$

$$
\Sigma x y=a \Sigma x+b \Sigma x^{2}
$$

\therefore The normal equations of $y=a+b x$ are

$$
\begin{aligned}
& \Sigma y=n a+b \Sigma x \\
& \Sigma x y=a \Sigma x+b \Sigma x^{2}
\end{aligned}
$$

NOTE:- Normal equations for $y=a x+b$ are

$$
\begin{aligned}
\Sigma y & =a \Sigma x+n b \\
\Sigma x y & =a \Sigma x^{2}+b \Sigma x
\end{aligned}
$$

working procedure tor problems

1) We fires write the normal lavations appropriate to curve of fit I) we prepare the relevant table and find the value of summation present in normal equations we eubetitute the values to arrive at
a system of equations in unknown parameters
2) we find the parameters by solving and mbititute in given equations
problems
3) Fit a straight line $y=a+b x$ in the least square sence for the data.

x	1	3	4	6	8	9	11	14
y	1	2	4	4	5	7	8	9

Normal equations for $y=a+b x$ are

$$
\begin{aligned}
& \sum y=n a+b \Sigma x \rightarrow 0 \\
& \sum x y=a \sum x+b \sum x^{2} \rightarrow \text { (2) } \quad n=8
\end{aligned}
$$

x	y	$x y$	x^{2}
1	1	1	1
3	2	6	9
4	4	16	16
6	4	24	36
8	5	40	64
9	7	63	81
11	8	88	121
14	9	126	196
56	40	364	524

Normal equations of (1) and (2) becomes

$$
\begin{aligned}
40 & =8 a+56 b \\
364 & =56 a+524 b \\
a & =0.545 \quad b=0.636
\end{aligned}
$$

put a and b in $y=a+b x$

$$
y=0.545+0.636 x
$$

2) Fit a straight line $y=a+b x$ for the data

x	0	1	2	3	4	5	6
y	2	1	3	2	4	3	5

Normal equations for $y=a+b x$ are

$$
\begin{gathered}
\Sigma y=n a+b \Sigma x+(1) \\
\Sigma x y=a \Sigma x+b \Sigma x^{2} \rightarrow \text { (2) } \\
n=7
\end{gathered}
$$

x	y	$x y$	x^{2}
0	2	0	0
1	1	1	1
2	3	6	4
3	2	6	9
4	4	16	16
5	3	15	25
6	5	30	36
21	20	74	91

Normal equations (1) and (1) becomes

$$
\begin{aligned}
& 20=7 a+21 b \\
& 74=21 a+91 b \\
& a=1.357 \quad b=0.5
\end{aligned}
$$

put a and b in $y=a+b x$

$$
y=1.357+0.5 x
$$

3) Find the equation of beet fitting straight line $y=a x+b$ for the following data

x	5	10	15	20	25
y	16	19	23	26	30

Normal equations for $y=a x+b$ are

$$
\begin{aligned}
\Sigma y= & a \sum x+n b+\text { (1) } \\
\Sigma x y= & a \sum x^{2}+b \sum x+\text { (1) } \\
& n=5
\end{aligned}
$$

x	y	$x y$	x^{2}
5	16	80	25
10	19	190	100
15	23	345	225
20	26	520	400
25	30	750	625
75	114	1885	1375

Normal equations (1) and (2)

$$
\begin{aligned}
& \left\{\sum_{1}^{n} b=n b\right. \\
& y=a x+b \rightarrow 0 \\
& \sum y=a \Sigma x+n b \\
& x^{l y} x \text { in (1) } \\
& x y=a x^{2}+b x \\
& \sum x y=a \Sigma x^{2}+b \Sigma x
\end{aligned}
$$

$$
\begin{gathered}
\text { become } \\
114=75 a+5 b \\
1885=1375 a+75 b \\
a=0.7 \quad b=12.3
\end{gathered}
$$

put a and b in $y=a x+b$

$$
y=0.7 x+12.3
$$

4) Find the equation of the but fitting straight line for the data.

x	0	1	2	3	4	5
y	9	8	24	28	26	20

we shall fit the straight line $y=a x+b$ for the given data The normal equations are

$$
\begin{aligned}
& \Sigma y=a \sum x+n b \rightarrow \text { (1) } \\
& \sum x y=a \sum x^{2}+b \Sigma x \rightarrow \text { (2) } n=b
\end{aligned}
$$

x	y	$x y$	x^{2}
0	9	0	0
1	8	8	1
2	24	48	4
3	28	84	9
4	26	104	16
5	20	100	25
15	115	344	55

Normal equations (1) and (2) becomes

$$
\begin{aligned}
115 & =15 a+6 b \\
344 & =55 a+15 b \\
a & =3.228 \quad b=11.09
\end{aligned}
$$

put a and b in $y=a x+b$

$$
y=3.228 x+11.09
$$

54 fit a etraight line for the data

x	50	70	100	120
y	12	15	21	25

we shall fit the straight line $y=a x+b$ for the given data.
The normal cautions are

$$
\begin{aligned}
\Sigma y & =a \Sigma x+n b \rightarrow \text { (1) } \\
\Sigma x y & =a \Sigma x^{2}+b \Sigma x \rightarrow \text { (2) }
\end{aligned}
$$

x	y	$x y$	x^{2}
50	12	600	2500
70	15	1050	4900
100	21	2100	10000
120	25	3000	14400
340	73	6750	31800

Normal equations (1) and (1) becomes

$$
\begin{aligned}
73 & =340 a+4 b \\
6700 & =31800 a+340 b \\
a & =0.188 \quad b=2.23
\end{aligned}
$$

put a and b in $y=a x+b$

$$
y=0.188 x+2.23
$$

6) A Simply supported beam carries a concentrated load p at it t midpoint corresponding to various values of p the maximum detect - on y is mealured and is given in the following table

P	100	120	140	160	180	200
y	0.45	0.55	0.60	0.70	0.80	0.85

Find the law of the form $y=a+b p$ and hence estimate y when $p=150$

$$
y=a+b p
$$

Normal equations are

$$
\begin{aligned}
\Sigma y & =n a+b \Sigma p \rightarrow(1) \\
\Sigma p y & =a \Sigma p+b \Sigma p^{2} \rightarrow \text { (2) }
\end{aligned}
$$

p	y	$p y$	p^{2}
100	0.45	45	10000
120	0.55	66	14400
140	0.60	84	19600
160	0.70	112	25600
180	0.80	144	32400
200	0.85	170	40000
900	3.95	621	142000

Normal equations (1) and (1) becomes
$3.95=6 a+900 b$
$621=900 a+142000 b$

$$
a=0.048 \quad b=0.004
$$

put a and b in $y=a+b p$ $y=0.048+0.004 p$ when $P=150$ $y=0.65$

Fitting of a second degree parabola $y=a+b x+c x^{2}$ consider a set of n given values (x, y) for fitting the curve of $y=a+b x+c x^{2}$ where a, b and c are parameters to be determined

$$
\begin{aligned}
& y=a+b x+c x^{2} \rightarrow 0 \\
& \Sigma y=n a+b \sum x+c \sum x^{2} \\
& x^{l y} x \text { in } e q^{n} \text { (1) } \\
& x y=x a+b x^{2}+c x^{3} \rightarrow \text { (1) } \\
& \Sigma x y=a \Sigma x+b \Sigma x^{2}+c \Sigma x^{3} \rightarrow \text { (3) } \\
& x \text { (y } x \text { in eq n (1) } \\
& x^{2} y=a x^{2}+b x^{3}+c x^{4} \\
& \Sigma x^{2} y=a \Sigma x^{2}+b \Sigma x^{3}+c \sum x^{4} \rightarrow(4)
\end{aligned}
$$

Normal equations are

$$
\begin{aligned}
& n a+b \Sigma x+c \Sigma x^{2}=\Sigma y \\
& a \Sigma x+b \Sigma x^{2}+c \Sigma x^{3}=\Sigma x y \\
& a \Sigma x^{2}+b \Sigma x^{3}+c \Sigma x^{4}=\Sigma x^{2} y
\end{aligned}
$$

problems

1) Fit a parabola of second degree $y=a+b x+c x^{2}$ for the data

x	0	1	2	3	4
y	1	1.8	1.3	2.5	2.3

Normal equations for $y=a+b x+c x^{2}$ are

$$
\begin{array}{rlr}
\Sigma y & =n a+b \Sigma x+c \Sigma x^{2} \\
\Sigma x y & =a \Sigma x+b \Sigma x^{2}+c \Sigma x^{3} \\
\Sigma x^{2} y & =a \Sigma x^{2}+b \Sigma x^{3}+c \Sigma x^{4} & n=5
\end{array}
$$

x	y	$x y$	x^{2}	$x^{2} y$	x^{3}	x^{4}
0	1	0	0	0	0	0
1	1.8	1.8	1	1.8	1	1
2	1.3	2.6	4	5.2	8	16
3	2.5	7.5	9	21.5	27	81
4	2.3	9.2	16	36.8	64	256
10	8.9	21.1	30	66.3	100	354

Normal equations becomes

$$
\begin{aligned}
& 5 a+10 b+30 c=8.9 \\
& 10 a+30 b+100 c=21.1 \\
& 30 a+100 b+354 c=66.3 \\
& a=1.07 \quad b=0.415 \quad c=-0.021
\end{aligned}
$$

put a, b and c in $y=a+b x+c x^{2}$

$$
y=1.07+0.415 x-0.021 x^{2}
$$

2) Fit a parabola $y=a+b x+c x^{2}$ by the method of colt ralares for the data.

x	2	4	6	8	10
y	3.07	12.85	31.47	57.38	91.29

x	y	x^{2}	x^{3}	$x 4$	$x y$	$x^{2} y$
2	3.07	4	8	16	6.14	12.28
4	12.85	16	64	256	51.4	205.6
6	31.47	36	216	1296	188.82	1132.9
8	57.38	64	512	4096	459.04	3672.3
10	91.29	100	1000	10000	912.9	9129
30	196.06	220	1800	15664	1618.3	14152.1

Normal equations for

$$
\begin{array}{rl}
y & =a+b x+c x^{2} \text { are } \\
\Sigma y & =n a+b \Sigma x+c \Sigma x^{2} \\
\Sigma x y & =a \Sigma x+b \Sigma x^{2}+c \Sigma x^{3} \\
\Sigma x^{2} y & =a \Sigma x^{2}+b \Sigma x^{3}+c \Sigma x^{4} \\
n & n=5
\end{array}
$$

Normal equations becomes

$$
\begin{array}{r}
5 a+30 b+220 c=196.06,30 a+220 b+1800 c=1618.3 \\
220 a+1800 b+15664 c=14152.13
\end{array}
$$

$$
a=0.696 \quad b=-0.85 \quad c=0.99
$$

put a, b and c in $y=a+b x+c x^{2}$

$$
\begin{aligned}
& y=a+b x+c x^{2} \\
& y=0.696-0.85 x+0.99 x^{2}
\end{aligned}
$$

3) Fit a second degree parabola $y=A+B x+C x^{2}$ in the least equare sense for the following data and hence find y at $x=6$.

x	1	2	3	4	5
y	10	12	13	16	19

The normal equation of $y=A+B x+C x^{2}$ are

$$
\begin{array}{ll}
\Sigma y=n A+B \Sigma x+C \Sigma x^{2} & \\
\Sigma x y=A \Sigma x+B \sum x^{2}+C \Sigma x^{3} & n=5 \\
\Sigma x^{2} y=A \Sigma x^{2}+B \Sigma x^{3}+C \Sigma x^{4} &
\end{array}
$$

x	y	x^{2}	x^{3}	x^{4}	$x y$	$x^{2} y$
1	10	1	1	1	10	10
2	12	4	8	16	24	48
3	13	9	27	81	39	117
4	16	16	64	256	64	256
5	19	25	125	625	95	475
15	70	55	225	979	232	906

Normal equations becomes

$$
\begin{aligned}
& 5 A+15 B+55 C=70 \\
& 15 A+55 B+225 C=232 \\
& 55 A+225 B+979 C=906 \\
& A=9.4 \quad B=0.48 \quad C=0.28
\end{aligned}
$$

put A, B and C in $y=A+B x+C x^{2}$

$$
\begin{gathered}
y=9.4+0.48 x+0.28 x^{2} \\
\text { when } x=6 \\
y=9.4+0.48 \times 6+0.28 \times 6^{2} \\
y=22.36
\end{gathered}
$$

4) Fit a second degree parabola $y=A x^{2}+B x+C$ in the leach equare sense for the following data and hence find y at $x=6$

x	1	2	3	4	5
y	10	12	13	16	19

Normal equations of $y=A x^{2}+B x+C \rightarrow$ (1) are

$$
\Sigma y=A \Sigma x^{2}+B \Sigma x+n C
$$

$x^{l y} x$ in $\log ^{n}$ (1)

$$
\begin{aligned}
& x y=A x^{3}+B x^{2}+C x+(2) \\
& \sum x y=A \sum x^{3}+B \sum x^{2}+C \sum x
\end{aligned}
$$

$x^{l y} x$ in lq^{n} (2)

$$
\begin{aligned}
x^{2} y & =A x^{4}+B x^{3}+C x^{2}-y \\
\Sigma x^{2} y & =A \Sigma x^{4}+B \Sigma x^{3}+C \Sigma x^{2}
\end{aligned}
$$

\therefore Normal equations are

$$
\begin{array}{ll}
A \sum x^{2}+B \sum x+n c=\Sigma y \\
A \sum x^{3}+B \sum x^{2}+C \sum x=\sum x y \\
A \sum x^{4}+B \sum x^{3}+C \sum x^{2}=\sum x^{2} y & n=5
\end{array}
$$

x	y	x^{2}	x^{3}	x^{4}	$x y$	$x^{2} y$
1	10	1	1	1	10	10
2	12	4	8	16	24	48
3	13	9	27	81	39	117
4	16	16	64	256	64	256
5	19	25	125	625	95	475
15	70	55	225	979	232	906

Normal equations become

$$
\begin{aligned}
& 55 A+15 B+5 C=70 \\
& 225 A+55 B+15 C=232 \\
& 979 A+225 B+55 C=906 \\
& A=0.28 \quad B=0.48 \quad C=9.4
\end{aligned}
$$

put A, B and C in $y=A x^{2}+B x+C$

$$
y=0.28 x^{2}+0.48 x+9.4
$$

when $x=6$

$$
\begin{aligned}
& y=0.28 \times 36+0.48 \times 6+9.4 \\
& y=22.36
\end{aligned}
$$

5) Fit a parabola for the data

x	1	2	3	4	5	6	7	8	9
y	2	6	7	8	10	11	11	10	9

we shall tit the parabola $y=a+b x+c x^{2}$ for the given data. The normal equations are

$$
\begin{align*}
& \Sigma y=n a+b \Sigma x+c \sum x^{2} \\
& \Sigma x y=a \Sigma x+b \Sigma x^{2}+c \Sigma x^{3} \\
& \Sigma x^{2} y=a \Sigma x^{2}+b \Sigma x^{3}+c \Sigma x^{4}
\end{align*}
$$

x	y	x^{2}	x^{3}	x^{4}	$x y$	$x^{2} y$
1	2	1	1	1	2	2
2	6	4	8	16	12	24
3	7	9	27	81	21	63
4	8	16	64	256	32	128
5	10	25	125	625	50	250
6	11	36	216	1296	66	396
7	11	49	343	2401	77	539
8	10	64	512	4096	80	640
9	9	81	729	6561	81	729
45	74	285	2025	15333	421	2771

Normal equation becomes $9 a+45 b+285 c=74$ $45 a+285 b+2025 c=421$ $285 a+2025 b+15333 c=2771$ $a=-0.928 \quad b=3.52 \quad c=-0.26$
put a, b and c in $y=a+b x+c x^{2}$ $y=-0.928+3.52 x+\left[-0.26 x^{2}\right]$ $y=-0.928+3.52 x-0.26 x^{2}$
6) find the bet values of a, b, c if the equation $y=a+b x+c x^{2}$ is to fit most closely to the following observations

x	-2	-1	0	1	2
y	-3.15	-1.39	0.62	2.88	5.378

Normal equations of $y=a+b x+c x^{2}$

$$
\begin{aligned}
& \Sigma y=n a+b \Sigma x+c \sum x^{2} \\
& \Sigma x y=a \Sigma x+b \Sigma x^{2}+c \Sigma x^{3} \\
& \Sigma x^{2} y=a \Sigma x^{2}+b \Sigma x^{3}+c \Sigma x^{4}
\end{aligned}
$$

x	y	x^{2}	x^{3}	x^{4}	$x y$	$x^{2} y$
-2	-3.15	4	-8	16	6.3	-12.6
-1	-1.39	1	-1	1	1.39	-1.39
0	0.62	0	0	0	0	0
1	2.88	1	1	1	2.88	2.88
2	5.378	4	8	16	10.756	21.512
0	4.338	10	0	34	21.326	10.402

Normal equations becomes $5 a+0 b+10 c=4.338$
$0 a+10 b+O C=21.326$
$10 a+0 b+34 c=10.402$
$a=0.621 \quad b=2.132 \quad c=0.123$
put a, b and c in $y=a+b x+c x^{2}$
$y=0.621+2.132 x+0.123 x^{2}$

Take log on both rides [to bale e]

$$
\begin{aligned}
\log _{e} y & =\log _{e}\left(a b^{x}\right) \\
\log _{e} y & =\log _{e} a+\log _{e} b^{x} \\
\log _{e} y & =\log _{e} a+x \log _{e} b \\
y & =A+B x \rightarrow \text { (1) }
\end{aligned}
$$

where $y=\log _{e} y \quad A=\log _{e} a \quad B=\log _{e} b \quad x=x$
Normal equations becomes

$$
\begin{aligned}
& \sum Y=n A+B \sum X \rightarrow \text { (1) } \\
& \Sigma X Y=A \sum X+B \sum X^{2} \rightarrow \text { (3) }
\end{aligned}
$$

solving (2) and (3) we obtain A and B we have

$$
\begin{array}{cc}
\log _{c} a=A & \log _{e} b=B \\
a=\varepsilon^{A} & b=\varepsilon^{B}
\end{array}
$$

Substitute the values of a and b in $y=a b^{x}$
problems

1) Fit a curve of the form $y=a b^{x}$ in the lout square sense for the following data

x	0	2	4	5	7	10
y	100	120	256	390	710	1600

consider $y=a b^{x}$
apples log on both sides

$$
\begin{aligned}
\log _{e} y & =\log _{e}\left(a b^{x}\right) \\
\log _{e} y & =\log _{e} a+\log _{e} b^{x} \\
\log _{e} y & =\log _{e} a+x \log _{e} b \\
y & =A+B x
\end{aligned}
$$

where $y=\log _{e} y$

$$
A=\log _{e} a \quad \& \quad a=\varepsilon^{A} \quad B=\log _{e} b \Rightarrow b=\varepsilon^{B} \quad x=x
$$

Normal equations of $Y=A+B X$

$$
\begin{aligned}
& \sum y=n A+B \sum x \\
& \sum x y=A \Sigma x+B \sum x^{2}
\end{aligned}
$$

$x=x$	y	$y=\log _{e} y$	x^{2}	$x y$
0	100	4.6052	0	0
2	120	4.7875	4	9.575
4	256	5.5452	16	22.1808
5	390	5.9661	25	29.830
7	710	6.5653	49	45.957
10	1600	7.3778	100	73.778
28		34.8471	194	181.321

Normal equations becomes

$$
\begin{aligned}
& 6 A+28 B=34.8471 \\
& 28 A+194 B=181.3214
\end{aligned}
$$

By solving we get

$$
A=4.4298 \quad B=0.2953
$$

But $a=\varepsilon^{A}=e^{4.4298} \quad a=83.914$

$$
b=\varepsilon^{B}=\varepsilon^{0.2953} \quad b=1.343
$$

Then required curve is $y=(83.914)(1.3435)^{x}$
2) Fit a curve of the form $y=a b^{x}$ for the data hence find the estimation for y when $x=8$

x	1	2	3	4	5	6	7
y	87	97	113	129	202	195	193

consider $y=a b^{x}$
Apply \log on both rides

$$
\begin{aligned}
\log _{e} y & =\log _{e}\left(a b^{x}\right) \\
\log _{e} y & =\log _{e} a+\log _{e} b^{x} \\
\log _{e} y & =\log _{e} a+x \log _{e} b \\
y & =A+B x
\end{aligned}
$$

where $y=\log _{e} y \quad A=\log _{e} a \quad B=\log _{e} b \quad x=x$
Normal equation of $y=A+B x$ are

$$
\begin{aligned}
\Sigma Y= & n A+B \Sigma x \\
\Sigma x y= & A \Sigma x+B \Sigma x^{2} \\
& n=7
\end{aligned}
$$

$x=x$	y	$y=l_{0} y$	$x y$	x^{2}
1	87	4.47	4.47	1
2	97	4.57	9.14	4
3	113	4.73	14.19	9
4	129	4.86	19.44	16
5	202	5.31	26.55	25
6	195	5.27	31.62	36
7	193	5.26	36.82	49
28		34.47	142.23	140

Normal equations becomes

$$
\begin{array}{ll}
7 A+28 B=34.47 \\
28 A+140 B=142.23 \\
A=4.303 & B=0.1554 \\
A=\log _{e} a & B=\log _{e} b \\
a=e^{A} & b=e^{B} \\
a=e^{4.303} & b=e^{0.1554} \\
a=73.92 & b=1.1681
\end{array}
$$

put a and b in $y=a b^{x}$

$$
y=(73.92)(1.1681)^{x}
$$

when $x=8$

$$
y=(73.92)(1.1681)^{8}
$$

$$
y=256.18
$$

3) At constant Temperature the pressure P and volume v of a pos are connected by relation $P V^{V}=$ constant. Find the beet tithing squat
-on of this form to the following data and estimate v when pirn

$P(\mathrm{kq.fq}(\mathrm{~m})$	0.5	1.0	1.5	2.0	2.5	3.0
$V(c . c)$	1620	1000	750	620	520	460

consider $P V^{V}=K$ where K is constant lake \log on $B S$

$$
\begin{aligned}
& \log _{e} P V^{Y}=\log _{e} k \\
& \log _{e} P+8 \log _{e} V=\log _{e} k \\
& \log _{e} P=\log _{e} k-V \log e V
\end{aligned}
$$

let us take

$$
\begin{array}{ll}
\log _{e} P=y & \log _{e} v=x \\
\log _{e} k=a & -v=b
\end{array}
$$

so that we have
$y=a+b x$ which is a troight line

$$
\begin{aligned}
\Sigma y & =n a+b \Sigma x-1 \\
\Sigma x y & =a \Sigma x+b \Sigma x^{2} \rightarrow(2)
\end{aligned}
$$

Normal equations (1) and (2)

p	v	$x=\log _{e v}$	$y=\log _{e} p$	$x y$	x^{2}
0.5	1620	7.39	-0.69	-5.099	54.612
1.0	1000	6.91	0	0	47.748
1.5	750	6.62	0.40	2.648	43.824
2.0	620	6.43	0.69	4.436	41.344
2.5	520	6.25	0.92	5.75	39.062
3.0	460	6.13	1.1	6.743	37.576
		39.73	2.42	14.478	264.163

$$
\begin{gathered}
6 a+39.73 b=2.42 \\
39.73 a+264.1689 b=14.47 \\
a=9.7934 \quad b=-1.42
\end{gathered}
$$

when $P=4,4 V=17915$

$$
\begin{gathered}
\log _{e} K=a \Rightarrow k=b^{a} \\
k=17915 \\
-V=b \Rightarrow b=1.42
\end{gathered}
$$

The curve of tit $P V^{V}=k$

$$
\begin{aligned}
& V^{1.42}=\frac{17915}{4} \& V^{1.42}=4478 \\
& V=(4478)^{1 / 1.42}=372.59 \approx 373
\end{aligned}
$$

when $\quad P=4 \quad V=373$
4) Fit a curve of the form $y=a e^{b x}$ for the data

x	0	2	4
y	8.12	10	31.82

consider $\quad y=a e^{b x}$
Apply \log on both elides

$$
\begin{aligned}
\log _{e} y & =\log _{e}\left[a e^{b x}\right] \\
\log _{e} y & =\log _{e} a+b x \log _{e} e \quad \quad \log _{e}=1 \\
\log _{e} y & =\log _{e} a+b x \\
y & =A+b x
\end{aligned}
$$

where $y=\log _{e} y \quad A=\log _{e} a$ of $a=\varepsilon^{A}$
Normal equations are

x	y	$y=\log _{e} y$	$x y$	x^{2}
0	8.12	2.09	0	0
2	10	2.30	4.60	4
4	31.82	3.46	13.8	16
6		7.85	18.4	20

$$
\begin{aligned}
& \Sigma y=n A+b \Sigma x \\
& \Sigma x y=A \Sigma x+b \Sigma x^{2}
\end{aligned}
$$

Normal equation Becomes

$$
\begin{aligned}
& 3 A+6 B=7.85 \\
& 6 A+20 B=18.44 \\
& A=1.932 \quad B=0.3425
\end{aligned}
$$

But $A=\log _{e} a \Rightarrow a=\varepsilon^{A}=\varepsilon^{1.932}=6.9033$
$n=3$

x	y	$y=\log _{e} y$	$x y$	x^{2}
5	133	4.89	24.45	25
6	55	4.007	24.042	36
7	23	3.135	21.945	49
8	7	1.946	15.568	64
9	2	0.693	6.237	81
10	2	0.693	6.93	100
45		15.364	99.172	355

Normal equations become

$$
\left.\begin{array}{rl}
6 A+45 b & =15.364 \\
45 A+355 b & =99.172 \\
A & =9.443 \quad b=-0.92 \\
A & =\log _{e} a
\end{array}\right)=a=\varepsilon^{A} \text { d } \varepsilon^{9.443} \text { a }=12619
$$

put a and b in $y=a e^{b x}$

$$
y=12619 e^{-0.92 x}
$$

6) Fit a lect equare geometric curve $y=a x^{b}$ from the following data

x	1	2	3	4	5
y	0.5	2	4.5	8	12.5

consider $y=a x^{b}$
Apply \log on Both rides

$$
\begin{aligned}
\log _{e} y & =\log _{e} a x^{b} \\
\log _{e} y & =\log _{e} a+\log _{e} x^{b} \\
\log _{e} y & =\log _{e} a+b \log _{e} x \\
y & =A+B x
\end{aligned}
$$

where $y=\log _{e} y \quad A=\log _{e} a \quad x=\log _{e} x$
Normal equations are

$$
\begin{aligned}
& \Sigma y=n A+B \Sigma x \\
& \Sigma x y=A \Sigma x+B \Sigma x^{2} n=5 \\
& 5 A+4.787 b=6.1092 \\
& 4.787 A+B .1993 b=9.0804 \\
& A=-0.693 \quad b=2
\end{aligned}
$$

x	y	$x=\log _{e} x$	$y=\log _{e} y$	x^{2}	$x y$
1	0.5	0	-0.6931	0	0
2	2	0.6931	0.6931	0.4804	0.4804
3	4.5	1.0986	1.5041	1.2069	1.6524
4	8	1.3863	2.0794	1.9218	2.8827
5	12.5	1.6094	2.5257	2.5902	4.0649
		4.7874	6.1092	6.1993	9.0804

$$
\begin{gather*}
A=\log _{e} a \Rightarrow a=\varepsilon^{A} \\
a=\varepsilon^{-0.693} \quad a=0.5
\end{gather*}
$$

correlation:co-variation of two independent magnitudes is known as correlation.
10-relation co-etficient: The numerical meacere of corelation between two variables x and y is known as persons co-rfficient of correlation meal - le denoted by r.

$$
r=\frac{a_{x}^{2}+a_{y}^{2}-2_{x y}^{2}}{2 a_{x} a_{y}}
$$

Regrusion:- It is an estimation of 1 independent variable in tums of the order.
The but fitting straight line of the form $y=a x+b$ is called regre - Ilion line of y on x and $x=a y+b$ is called regrevion line of x on y

Working procedure to find the coefficient of corelation and equation of lines of regrevion

1) prepare the table showing the columns x, y, z and x^{2}, y^{2}, z^{1} and finding the summation of $x, y, z, x^{2}, y^{2}, z^{2}$
2) Find $\bar{x}=\frac{\sum x}{n}, \bar{y}=\frac{\sum y}{n}, \bar{z}=\frac{\sum z}{n}$ where $z=x-y$
3) Find $a_{x}^{2}=\frac{\sum x^{2}}{n}-(\bar{x})^{2}, a_{y}^{2}=\frac{\sum y^{2}}{n}-(\bar{y})^{2}$ and

$$
a_{z}^{2}=\frac{\sum z^{2}}{n}-(\bar{z})^{2}
$$

$$
r=\frac{a_{x}^{2}+a_{y}^{2}-a_{z}^{2}}{2 a_{x} a_{y}}
$$

5) Find the lines of regreuion

$$
\begin{aligned}
& y-\bar{y}=\gamma \frac{a_{y}}{a_{x}}(x-\bar{x}) \\
& x-\bar{x}=\gamma \frac{a_{x}}{a_{y}}(y-\bar{y})
\end{aligned}
$$

NOIE: Find the line of requemion and coefficient of corelation 1) Find \bar{x}, \bar{y}
2) prepare the table showing $x=x-\bar{x}, y=y-\bar{y}, x y, x^{2}, y^{2}$
3) Find $\Sigma x y, \Sigma x^{2}, \Sigma y^{2}$
4) Find regremion lines ie in the form of

$$
\text { a) } \begin{aligned}
y & =\frac{\sum x y}{\sum x^{2}} \cdot x \\
y-\bar{y} & =\frac{\sum x y}{\sum x^{2}}(x-\bar{x}) \text { regrevion line } y \text { on } x \\
\text { by } x & =\frac{\sum x y}{\sum y^{2}} y \\
x-\bar{x} & =\frac{\sum x y}{\sum y^{2}}(y-\bar{y}) \text { regrmion line } x \text { on } y
\end{aligned}
$$

s) Find the corelation co-efticient

$$
y= \pm \sqrt{(\text { (o-dtt of } x)(\text { (o -eff of } y)}
$$

co-relation co-efficient can also be written as

$$
\gamma=\frac{\sum x y}{\sqrt{\Sigma x^{2}} \sqrt{\Sigma y^{2}}}
$$

NOTE: Coefficient of correlation numerically does not exceed unity i,e $-1 \leq r \leq 1$
problems

1) compute the co-efficient of correlation and the equation the lines of regremion for the data

x	1	2	3	4	5	6	7
y	9	8	10	12	11	13	14

$$
n=7
$$

x	y	$z=x-y$	x^{2}	y^{2}	z^{2}
1	9	-8	1	81	64
1	8	-6	4	64	36
3	10	-7	9	100	49
4	12	-8	16	144	64
5	11	-6	25	111	36
6	13	-7	36	169	49
7	14	-7	49	196	49
28	77	-49	140	875	347

substitute all there in

$$
\begin{aligned}
r=\frac{a_{x}^{2}+a_{y}^{2}-a_{2}^{2}}{2 a x a y} & =\frac{4+4-0.57}{2 \times \sqrt{4} \times \sqrt{4}}=\frac{7.43}{8}=0.928 \underline{4} 0.93 \\
r & =0.93
\end{aligned}
$$

The lines of regremion are given by

$$
\begin{array}{l|l}
y-\bar{y}=r \frac{a y}{a x}(x-\bar{x}) & x-\bar{x}=\gamma \frac{a_{x}}{a y}(y-\bar{y}) \\
y-11=\frac{0.93 \times 8}{x}(x-4) & x-4=\frac{(0.93)(2)}{(2)}(y-11) \\
y-11=0.93 x-3.72 & x-4=0.93 y-10.23 \\
y=0.93 x-3.72+11 & x=0.93 y-10.23+4 \\
y=0.93 x+7.28 & x=0.93 y-6.23
\end{array}
$$

There are lines of regression
2) Find the correlation co-efficient tor two groups and equation of
lines of regression

A	92	89	87	86	83	77	71	63	53	50
B	86	83	91	87	68	85	52	81	37	57

$$
n=10
$$

$A=x$	$B=y$	$z=x-y$	x^{2}	y^{2}	z^{2}
92	86	6	8464	7396	36
89	83	6	7921	6889	36
87	91	-4	7569	8281	16
86	77	9	7396	5921	81
83	68	15	6889	4624	225
77	85	-8	5929	7225	64
71	52	19	5041	2704	361
63	81	-19	3969	6714	361
53	37	16	2809	1369	256
50	57	-7	2500	3249	49
751	718	33	58487	54390	1485

$$
a_{z}^{2}=\frac{\Sigma z^{2}}{n}-(\bar{z})^{2}
$$

$$
a_{2}^{2}=\frac{1485}{10}-(3.3)^{2}
$$

$$
a_{2}^{2}=148.5-10.89
$$

$$
\begin{aligned}
& \bar{x}=\frac{\sum x}{n}=\frac{751}{10}=75.1 \\
& \bar{y}=\frac{\sum y}{n}=\frac{718}{10}=71.8 \\
& \bar{z}=\frac{\sum z}{n}=\frac{33}{10}=3.3 \\
& a_{x^{2}}=\frac{\sum x^{2}}{n}-(\bar{x})^{2}=\frac{58487}{10}-(75.1)^{2} \\
& a x^{2}=208.69 \quad a x=14.446 \\
& 9 y^{2}=\frac{\sum y^{2}}{n}-(\bar{y})^{2}=\frac{54390}{10}-(71.8)^{2} \\
& 2 y^{2}=283.76 \\
& a y^{2}-a_{2}{ }^{2}=16.845 \\
& x a y \\
& x=\frac{208.69+283.76-137.61}{2 \times 14.446 \times 16.845} \\
& \gamma=0.729 \\
& \gamma=0.73
\end{aligned}
$$

$$
\gamma=\frac{a_{x}{ }^{2}+a_{y}{ }^{2}-a_{2}{ }^{2}}{2 a_{x} a_{y}}=\frac{208.69+283.76-137.61}{2 \times 14.446 \times 16.845}
$$

$$
a_{2}^{2}=137.61
$$

The lines of regrevion are given by

$$
\begin{aligned}
& y-\bar{y}=8 \frac{2 y}{9 x}(x-\bar{x}) \\
& y-71.8=\frac{0.73 \times 16.845}{14.446}(x-75.1) \\
& y-71.8=0.85(x-75.1) \\
& y-71.8=0.85 x-63.84 \\
& y=0.85 x-63.84+71.8 \\
& y=0.85 x+7.965
\end{aligned}
$$

$$
\begin{aligned}
& x-\bar{x}=\gamma \frac{a x}{a y}(y-\bar{y}) \\
& x-75.1=\frac{0.73 \times 14.446}{16.845}(y-71.8) \\
& x-75.1=0.63(y-71.8) \\
& x-75.1=0.63 y-45.234 \\
& x=0.63 y-45.234+75.1 \\
& x=0.63 y+29.866
\end{aligned}
$$

3) Find the correlation coefficient and equation of lines of a seqremion for the following values of x and y

x	1	2	3	4	5
y	2	5	3	8	7

$$
n=5
$$

x	y	$z=x-y$	x^{2}	y^{2}	z^{2}
1	2	-1	1	4	1
2	5	-3	4	25	9
3	3	0	9	9	0
4	8	-4	16	64	16
5	7	-2	25	49	4
15	25	-10	55	151	30

$$
\begin{aligned}
\bar{x} & =\frac{\sum x}{n}=\frac{15}{5}=3 \\
\bar{y} & =\frac{\sum y}{n}=\frac{25}{5}=5 \\
\bar{z} & =\frac{\sum z}{n}=-\frac{10}{5}=-2 \\
a_{x}^{2} & =\frac{\sum x^{2}}{n}-(\bar{x})^{2}=\frac{55}{5}-(3)^{2}=11-9=24 \sqrt{1} \\
a_{y}^{2} & =\frac{\sum y^{2}}{n}-(\bar{y})^{2}=\frac{151}{5}-(5)^{2}=30.2-25=5.1
\end{aligned}
$$

$$
a_{2}^{2}=\frac{\Sigma z^{2}}{n}-(\bar{z})^{2}=\frac{30}{5}-(-2)^{2}=6-4=2
$$

$$
r=\frac{a x^{2}+9 y^{2}-2 z^{2}}{2 a x a y}=\frac{2+5.2-2}{2 \times \sqrt{2} \times \sqrt{5.2}}=0.806 \quad r=0.81
$$

The lines of regremion are given by

$$
\begin{array}{c|l}
y-\bar{y}=r \frac{9 y}{a x}(x-\bar{x}) & x-\bar{x}=r \frac{a x}{a y}(y-\bar{y}) \\
y-5=\frac{0.81 \times \sqrt{5.2}}{\sqrt{2}}(x-3) & x-3=\frac{0.81 x \sqrt{2}}{\sqrt{5.2}}(y-5) \\
y-5=1.306(x-3) & x-3=0.502(y-5) \\
y-5=1.306 x-3.918 & x-3=0.502 y-2.51 \\
y=1.306 x-3.918+5 & x=0.502 y-2.51+3 \\
y=1.306 x+1.082 & x=0.502 y+0.49
\end{array}
$$

4) Obtain the lines of regremion and hence find the coefficient of correlation of the data

x	1	3	4	2	5	8	9	10	13	15
y	8	6	10	8	12	16	16	10	32	32

$$
n=10
$$

$$
\begin{array}{ll}
\bar{x}=\frac{\sum x}{n} & \bar{y}=\frac{\sum y}{n} \\
\bar{x}=\frac{70}{10} & \bar{y}=\frac{150}{10} \\
\bar{x}=7 & \bar{y}=15
\end{array}
$$

x	y	$x=x-\bar{x}$	$y=y-\bar{y}$	x^{2}	y^{2}	$x y$
1	8	-6	-7	36	49	42
3	6	-4	-9	16	81	36
4	10	-3	-5	9	25	15
2	8	-5	-7	25	49	35
12	-2	-3	4	9	6	
8	16	1	1	1	1	1
9	16	2	1	4	1	2
10	10	3	-5	9	25	-15
13	32	6	17	36	289	102
15	32	8	17	64	289	136
70	150			204	818	360

we have lines of regremion in the form

$$
\begin{aligned}
& y=\frac{\sum x y}{\sum x^{2}} x \\
& y-\bar{y}=\frac{360}{204}(x-\bar{x}) \\
& y-15=1.764(x-7) \\
& y=1.764 x-12.348+15 \\
& y=1.764 x+2.652 \\
& x=\frac{\sum x y}{\sum y^{2}} y \\
& x-\bar{x}=\frac{360}{818}(y-\bar{y}) \\
& x-7=0.44(y-15) \\
& x-7=0.44 y-6.6 \\
& x=0.44 y+0.4
\end{aligned}
$$

co-efficient of corelation is

$$
r=\sqrt{[\operatorname{co-\varepsilon ff} \text { of } x][\operatorname{co-rff} \text { of } y]}
$$

sign of r is positive since both the mearmion co-efticients are positive
5) Find the corelation co-Efficient between x and y for the following data. Also obtain the regremion lines

x	1	2	3	4	5	6	7	8	9	10
y	10	12	16	28	25	36	41	49	40	50

$$
n=10
$$

$$
\begin{array}{lll}
\bar{x}=\frac{\sum x}{n} & \bar{y}=\frac{\sum y}{n} & \bar{z}=\frac{\sum z}{n} \\
\bar{x}=\frac{55}{10} & \bar{y}=\frac{307}{10} & \bar{z}=-\frac{252}{10} \\
\bar{x}=5.5 & \bar{y}=30.7 & \bar{z}=-25.2
\end{array}
$$

x	y	$z=x-y$	x^{2}	y^{2}	z^{2}
1	10	-9	1	100	81
2	12	-10	4	144	100
3	16	-13	9	256	169
4	28	-24	16	784	576
5	25	-20	25	625	400
6	36	-30	36	1296	900
7	41	-34	49	1681	1156
8	49	-41	64	2401	1681
9	40	-31	81	1600	961
10	50	-40	100	2500	1600
55	307	-252	385	11387	7624

$$
\begin{aligned}
& a_{x}{ }^{2}=\frac{\sum x^{2}}{n}-(\bar{x})^{2}=\frac{385}{10}-(5.5)^{2} \\
& a_{x}{ }^{2}=38.5-30.25=8.25 \\
& a_{y}{ }^{2}=\frac{\sum y^{2}}{n}-(\bar{y})^{2}=\frac{11387}{10}-(30.7)^{2} \\
& a_{y}{ }^{2}=1138.7-942.49=196.11 \\
& a_{z}{ }^{2}=\frac{\sum z^{2}}{n}-(\bar{z})^{2}=\frac{7624}{10}-(-25.1)^{2} \\
& a_{z}{ }^{2}=762.4-635.04=127.36 \\
& r=\frac{a_{x}{ }^{2}+9 y^{2}-a_{z}^{2}}{29 x q_{y}}=\frac{8.25 \times 196.21 \times 107.3}{2 \times \sqrt{8.25} \times \sqrt{196.21}} \\
& r=0.958
\end{aligned}
$$

The lines of regremion are given by

$$
\begin{aligned}
& y-\bar{y}=\gamma \frac{a y}{a x}(x-\bar{x}) \\
& y-30.7=\frac{0.9 .58 \times \sqrt{196.21}}{\sqrt{8.25}}(x-5.5) \\
& y-30.7=0.958 \times 4.876(x-5.5) \\
& y-30.7=4.671(x-5.5) \\
& y=4.671 x-25.691+30.7 \\
& y=4.671 x+5.009
\end{aligned}
$$

$$
\begin{aligned}
& x-\bar{x}=\gamma \frac{2 x}{2 y}(y-\bar{y}) \\
& x-5.5=\frac{0.958 \times \sqrt{8.25}}{\sqrt{196.21}}(y-30.7) \\
& x-5.5=0.1964(y-30.7) \\
& x=0.1964 y-6.029+5.5 \\
& x=0.1964 y-0.529
\end{aligned}
$$

6) The following data lines gives the age of husband (x) and age of wife (y) in years. form the two yegremion lines and colculart the age of husband corruponding to 16 years age of wite.

x	36	23	27	28	28	29	30	31	33	35
y	29	18	20	22	27	21	29	27	29	28

$$
n=10
$$

x	y	$z=x-y$	x^{2}	y^{2}	z^{2}
36	29	7	1296	841	49
23	18	5	529	324	25
27	20	7	729	400	49
28	22	6	784	484	36
28	27	1	784	729	1
29	21	8	841	441	64
30	29	1	900	841	1
31	27	4	961	729	16
33	29	4	1089	841	16
35	28	7	1215	784	49
300	250	50	9138	6414	306

$$
r=\frac{a x^{2}+a y^{2}-a_{z}^{2}}{q a x a y}
$$

$$
\begin{aligned}
& \bar{x}=\frac{\sum x}{n}=\frac{300}{10}=30 \\
& \bar{y}=\frac{\sum y}{n}=\frac{250}{10}=25 \\
& \bar{z}=\frac{\Sigma z}{n}=\frac{50}{10}=5 \\
& a_{x}^{2}=\frac{\sum x^{2}}{n}-(\bar{x})^{2}=\frac{9138}{10}-(30)^{2} \\
& a_{x}^{2}=913.8-900=13.8=3.71 \\
& a_{y}^{2}=\frac{\sum y^{2}}{n}-(\bar{y})^{2}=\frac{6414}{10}-(25)^{2} \\
& a_{y}^{2}=641.4-625=16.4=4.04 \\
& a_{z}^{2}=\frac{\sum z^{2}}{n}-(\bar{z})^{2}=\frac{306}{10}-(5)^{2} \\
& a_{z}^{2}=30.6-25=5.6=2.366
\end{aligned}
$$

$$
\gamma=\frac{13.8+16.4-5.6}{2 \times 3.71 \times 4.04}
$$

The regremion line are given by

$$
\begin{aligned}
y-\bar{y} & =\gamma \frac{9 y}{9 x}(x-\bar{x}) \\
y-25 & =\frac{0.82 \times 4.04}{3.71}(x-30) \\
y-25 & =0.8939(x-30) \\
y & =0.8939 x-26.817+25 \\
y & =0.8939 x-1.817
\end{aligned}
$$

$$
\begin{aligned}
& x-\bar{x}=r \frac{2 x}{2 y}(y-\bar{y}) \\
& x-30=\frac{0.82 \times 3.71}{4.04}(y-25) \\
& x-30=0.7521(y-25) \\
& x=0.7521 y-18.8049+30 \\
& x=0.7521 y+11.19
\end{aligned}
$$

when $y=16, x=$?

$$
\begin{aligned}
& x=0.7521 y+11.19 \\
& x=0.7521 \times 16+11.19 \\
& x=23.22 \approx 23 \\
& x=23
\end{aligned}
$$

Hubands age is 13 years corruponding to wife age of 16 years.
7) Find the co-efficient of corelation for the following data.

x	10	14	18	22	26	30	$n=6$
$y y$	18	12	24	6	30	36	n

x	y	$x=x-\bar{x}$	$y=y-\bar{y}$	x^{2}	y^{2}	$x y$
10	18	-10	-3	100	9	30
14	12	-6	-9	36	81	54
18	24	-2	3	4	9	-6
22	6	2	-15	4	225	-30
26	30	6	9	36	81	54
30	36	10	15	100	225	150
120	126			280	630	252

$$
\begin{aligned}
& \bar{x}=\frac{\sum x}{n}=\frac{120}{6}=10 \\
& \bar{y}=\frac{\sum y}{n}=\frac{126}{6}=21 \\
& \gamma=\frac{\sum x y}{\sqrt{\sum x^{2}} \sqrt{\Sigma y^{2}}}=\frac{252}{\sqrt{280} \sqrt{630}} \\
& \gamma=0.6
\end{aligned}
$$

x	y	$z=x-y$	x^{2}	y^{2}	z^{2}
10	18	-8	100	324	64
14	12	2	196	144	4
18	24	-6	324	576	36
22	6	16	484	36	256
26	30	-4	676	900	16
30	36	-6	900	1296	36
120	126	-6	2680	3276	412

$$
\begin{aligned}
& \bar{x}=\frac{\Sigma x}{n}=\frac{120}{6}=20 \\
& \bar{y}=\frac{\Sigma y}{n}=\frac{126}{6}=21
\end{aligned}
$$

$$
\bar{z}=\frac{\Sigma z}{n}=\frac{-6}{6}=1
$$

$$
a_{x}^{2}=\frac{\sum x^{2}}{n}-(\bar{x})^{2}=\frac{2680}{6}-(20)^{2}
$$

$$
a x^{2}=46.66=6.83
$$

$a_{z}{ }^{2}=\frac{\sum z^{2}}{n}-(\bar{z})^{2}$

$$
x_{y}^{2}=\frac{\Sigma y^{2}}{n}-(\bar{y})^{2}=\frac{3276}{6}-(21)^{2}
$$

$$
a_{2}^{2}=\frac{412}{6}-(1)^{2}=67.66
$$

$$
\pi y^{2}=105=10 \cdot 24
$$

$$
r=\frac{a x^{2}+a_{y}^{2}-a_{2}^{2}}{2 a_{x} a_{y}}=\frac{46.66+105-67.66}{2 \times 6.83 \times 10.24}
$$

$$
\gamma=0.6
$$

8) Obtain the lines of regremion and hence find the co-8fficient of corelation for the data.

x	10	14	18	22	26	30		
y	18	12	24	6	30	36	\quad	
:---:								

x	y	$x=x-\bar{x}$	$y=y-\bar{y}$	x^{2}	y^{2}	$x y$
10	18	-10	-3	100	9	30
14	12	-6	-9	36	81	54
18	24	-2	3	4	9	-6
22	6	2	-15	4	225	-30
26	30	6	9	36	81	54
30	36	10	15	100	225	150
110	126			280	630	252

$$
\begin{aligned}
& \bar{x}=\frac{\Sigma x}{n}=\frac{120}{6}=20 \\
& \bar{y}=\frac{\Sigma y}{n}=\frac{126}{6}=21
\end{aligned}
$$

We have lines of regiecion

$$
x-\bar{x}=\frac{251}{630}(y-\bar{y})
$$

$$
x-20=0.4(y-21)
$$

$$
\begin{aligned}
& y=\frac{\sum x y}{\sum x^{2}} x \\
& y-\bar{y}=\frac{251}{280}(x-\bar{x}) \\
& y-21=0.9(x-20) \\
& y-11=0.9 x-18 \\
& y=0.9 x-18+21 \\
& y=0.9 x+3
\end{aligned}
$$

$$
x=0.4 y-8.4+20
$$

$y=0.9 x+3$ and
$x=0.4 y+11.6$ are

$$
x=0.4 y+11.6
$$

lines of regression
co- relation co-efticient is

$$
\begin{gathered}
r=\sqrt{(10-\text { eff of } x)(\operatorname{co-rff} \text { of } y)}=\sqrt{0.9 \times 0.4} \\
r=0.6
\end{gathered}
$$

$r=+0.6$ sign of γ is positive since both regremion co-eftici -ants are palitive
a) Find the corelation co-rfficient by obtaining the lines of regerelion for the above data

x	17	18	19	19	20	20	21	22	21	23		
y	12	16	14	11	15	19	22	15	16	20	\quad	$n=10$
:---												

$$
\begin{aligned}
& \bar{x}=\frac{\sum x}{n}=\frac{200}{10}=20 \\
& \bar{y}=\frac{\sum y}{n}=\frac{160}{10}=16
\end{aligned}
$$

x	y	$x=x-\bar{x}$	$y=y-\bar{y}$	x^{2}	y^{2}	$x y$
17	12	-3	-4	9	16	12
18	16	-2	0	4	0	0
19	14	-1	-2	1	4	2
19	11	-1	-5	1	25	5
20	15	0	-1	0	1	0
20	19	0	3	0	9	0
21	22	1	6	1	36	6
22	15	2	-1	4	1	-2
21	16	1	0	1	0	0
23	20	3	4	9	16	12
200	160			30	108	35

$$
\begin{aligned}
& y=1.16 x-7.33 \text { and } \\
& x=0.32 y+14.88
\end{aligned}
$$

lines of regremion co-relation co-etticier $-t$ is

$$
r=\sqrt{[\operatorname{co-lftx][(0-ltfy]}}
$$

$$
\begin{aligned}
y & =\frac{\sum x y}{\sum x^{2}} x \\
y-\bar{y} & =\frac{35}{30}(x-\bar{x}) \\
y-16 & =1.16(x-20) \\
y-16 & =1.16 x-23.33 \\
y & =1.16 x-7.33
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{\sum x y}{\sum y^{2}} y \\
& x-\bar{x}=\frac{35}{108}(y-\bar{y}) \\
& x-20=0.32(y-16) \\
& x=0.32 y-5.12+20 \\
& x=0.32 y+14.88
\end{aligned}
$$

	x-Series	y-Series
Mean	18	100
SD	14	20

and $r=0.8$ write down the equation of lines of regrecion and hence find the most probable value of y where $x=70$ By data $\bar{x}=18$ and $\bar{y}=100$

$$
a_{x}=14 \text { and } a_{y}=20
$$

we have the equation of regrution lines are given by

$$
\begin{array}{l|l}
y-\bar{y}=r \frac{a_{y}}{9 x}(x-\bar{x}) & x-\bar{x}=r \frac{a_{x}}{a_{y}}(y-\bar{y}) \\
y-100=\frac{0.8 \times 10}{14}(x-18) & x-18=\frac{0.8 \times 14}{20}(y-100) \\
y=1.14 x+79.48 & x=0.56 y-38
\end{array}
$$

when $x=70$ we obtain from fire equation

$$
\begin{aligned}
& y=1.14 x+79.48 \\
& y=1.14 x 70+79.48 \\
& y=159.28
\end{aligned}
$$

11) Show that if θ is the angle between the lines of regremion

$$
\text { then } \tan \theta=\frac{a_{x} a_{y}}{a_{x}{ }^{2}+a_{y}{ }^{2}}\left[\frac{1-r^{2}}{r}\right]
$$

WKT if θ is acute the angle between the lines $y=m_{1} x_{1}+c_{1}$ and $y=m_{1} x_{2}+c_{2}$ is given by

$$
\tan \theta=\frac{m_{2}-m_{1}}{1+m_{1} m_{2}} \rightarrow
$$

we hare lines of regrelion

$$
\begin{aligned}
& y-\bar{y}=r \frac{a y}{a x}(x-\bar{x})+(1) \\
& x-\bar{x}=r \frac{a x}{a_{y}}(y-\bar{y}) \\
& y-\bar{y}=\frac{a_{y}}{r q_{x}}(x-\bar{x}) \rightarrow \text { (2) }
\end{aligned}
$$

slopes of (1) and (2) are respectively given by

$$
m_{1}=\frac{r a y}{a x} \quad m_{2}=\frac{a y}{r a_{x}}
$$

Substitute the in the formula for $\tan \theta$ ($)$ we have $\tan \theta=\frac{\frac{a y}{r a x}-\frac{r a y}{d x}}{1+r \frac{a y}{a x} \frac{a y}{r a x}}=\frac{\frac{a y}{a x}\left[\frac{1}{r}-r\right]}{1+a y^{2} / a x^{2}}$

$$
\begin{aligned}
& \tan \theta=\frac{\frac{a y}{-a x}\left[\frac{1-1}{r}\right]}{\frac{a x^{2}+a y^{2}}{a a^{2}}} \\
& \tan \theta=\frac{a_{x} a y}{a_{x^{2}}+a^{2}}\left[\frac{1-\gamma^{2}}{\gamma}\right]
\end{aligned}
$$

12). In a bivarite distribution $a_{x}=a_{y}$ and the angle between the regrelion lines is $\tan ^{-1}(3)$ find the correlation co-efficient If θ is angle between the lines of gegreuion we hare

$$
\tan \theta=\frac{a x^{2} y}{a x^{2}+a y^{2}}\left[\frac{1-\gamma^{2}}{\gamma}\right] \rightarrow \text { (i) }
$$

By data $\theta=\tan ^{-1}(3)$ or $\tan \theta=3$ and $\quad a_{x}=9 y$

$$
\text { eq (1) } \begin{aligned}
3 & =\frac{Q x^{2}}{2 x}\left[\frac{1-\gamma^{2}}{\gamma}\right] \\
3 & =\frac{1-\gamma^{2}}{2 \gamma} \\
6 r & =1-r^{2} \\
r^{2}+6 r-1 & =0 \\
r & =\frac{-6 \pm \sqrt{40}}{2}=-\frac{6 \pm 2 \sqrt{10}}{2} \\
r & =-3 \pm \sqrt{10}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma=-3 \pm \sqrt{10}=0.1623 \\
& \gamma=-3-\sqrt{10}=-6.1623
\end{aligned}
$$

$$
\text { consider } r=0.1623
$$

$$
\text { Since } r \text { doennot }
$$ exceed unity

13) If $x=4 y+5$ and $y=k x+4$ are the regremion ling of x an y and y on x respectively. prove that $0 \leq k \leq 1 / 4$
wK co-etticient of corelation

$$
r=\sqrt{[(0-\varepsilon f f \text { of } y][c o-\varepsilon f f \text { of } x]}
$$

$$
\begin{aligned}
r & =\sqrt{4(K)} \\
r & =\sqrt{4 K} \text { squaring on both rides } \\
r^{2} & =4 K \\
W K T \quad O & \leq r^{2} \leq 1 \\
0 & \leq 4 K \leq 1 \\
O & \leq K \leq 1 / 4
\end{aligned}
$$

14) $8 x-10 y+66=0$ and $40 x-18 y=214$ are the two gegremion lines. Find the mean of $x^{\prime} s, y^{\prime} s$ and the corelation co-efficient find a_{y} if $a_{x}=3$
WKT regremion lines pales through \bar{x} and \bar{y}

$$
\begin{aligned}
& 8 \bar{x}-10 \bar{y}+66=0 \\
& 40 \bar{x}-18 \bar{y}-214=0 \quad 8 \quad 8 \bar{x}-10 \bar{y}=-66 \\
& 40 \bar{x}-18 \bar{y}=214
\end{aligned}
$$

By Jolving we get $\bar{x}=13$ and $\bar{y}=17$ we shall now rewrite the equation of the reqrevion lines to find the reqraction co-ethicients

$$
\begin{array}{ll}
y-\bar{y}=r \frac{a y}{a x}(x-\bar{x}) & \text { and } x-\bar{x}=r \frac{2 y}{a x}(y-\bar{y}) \\
10 y=8 x+66 & y=0.8 x+6.6+(1) \\
40 x=18 y+214 & x=0.45 y+5.35+\text { or (1) }
\end{array}
$$

From (1) $\gamma \frac{a y}{a x}=0.8 ; \gamma \frac{a x}{a y}=0.45$
correlation co-rthicient $r=\sqrt{0.8 \times 0.45} \quad r=0.6$
They $r=0.6$ Since both the Hegrexion co- Efticients are politive also $a_{2}=3$ by data and we have

$$
\begin{aligned}
& r \frac{a_{y}}{a_{x}}=0.8 \Rightarrow r \frac{a_{y}}{3}=0.8 \Rightarrow 0.6 a y=2.4 \quad a_{y}=4 \\
& r \frac{a_{x}}{a_{y}}=0.45 \Rightarrow \frac{0.6 x 3}{0.45}=a_{y} \quad a_{y}=4
\end{aligned}
$$

Engineering mathematic - IV
Module-05
\qquad PRAKASH Page \qquad
Sampling Theory and
Joint probability dytributions
Joint probability and Joint probability distribution

If x and y are two dis arete random variably, we define the joint probability function of x and y by

$$
P(x=x, y=y)=f(x, y)
$$

where $f(x, y)$ satisfy the Conditions $f(x, y) \geqslant 0$ and $\sum_{x} \sum_{y} f(x, y)=1$
The Second Condition means that the sum of all value of x and y Is equal to one.

Joint probability table

Joint probability table					
$x y$	y_{1}	y_{2}	\ldots	y_{n}	Sum
x_{1}	J_{11}	J_{12}	\cdots	$J_{1 n}$	$f\left(x_{1}\right)$
x_{2}	J_{21}	J_{22}	\cdots	$J_{2 n}$	$f\left(x_{2}\right)$
\ldots	\ldots	\ldots	\cdots	\ldots	\cdots
x_{m}	$J_{m 1}$	$J_{m 2}$	\cdots	$J_{m n}$	$f\left(x_{m}\right)$
Sum	$g\left(y_{1}\right)$	$g\left(y_{2}\right)$	\cdots	$g\left(y_{n}\right)$	1

Marginal probability distribution
In the Joint probability table, $f(x(1)$, $f\left(x_{2}\right), \therefore f\left(x_{m}\right)$ respectively represents the sum of all the entries in the fingt row, second row m th row. $g\left(y_{1}\right), g\left(4_{2}\right), \cdots . . g\left(y_{n}\right)$ respectively represents the sum of au the entries in the $i^{s t}$ column, $2^{\text {rd }} \cdots n^{\text {th }}$ column.

$$
\begin{aligned}
& f\left(x_{1}\right)=J_{11}+J_{12}+\cdots+J_{1 n} g\left(y_{1}\right)=J_{11}+J_{21}+\cdots+J_{m 1} \\
& f(x)=J_{21}+J_{22}+\cdots+J_{2 n} g\left(y_{2}\right)=J_{12}+J_{22}+\cdots+J_{m 2} \\
& f(x m)=\ldots \ldots+J_{m 1}+J_{m 2}+\cdots+J_{m n}, g(4 n)=J_{1 n}+J_{2 n}+\cdots+J_{m n}
\end{aligned}
$$

$\left\{f\left(x_{1}\right), f\left(x_{2}\right) \ldots f\left(x_{m}\right)\right\} \&\left\{g\left(y_{1}\right), g\left(y_{2}\right) \ldots g\left(y_{n}\right)\right\}$ are called marginal probability dijmibution op x \& y respectively.

NOTE:

$$
\begin{aligned}
& f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{m}\right)=1 \\
& g\left(x_{1}\right)+g\left(y_{2}\right)+\cdots+g\left(4_{n}\right)=1
\end{aligned}
$$

\qquad
Expectation: Expectation $\varnothing X$ is denoted by $E(x)$ or μ_{x}

$$
\begin{aligned}
& \mu_{x}=E(x)=\sum_{i=1}^{n} x_{i} f\left(x_{i}\right) \text { or } \sum x f(x) \\
& \mu_{y}=E(y)=\sum_{i=1}^{n} y_{i} g\left(y_{i}\right) \text { (r) } \sum y g(y) \\
& E(x y)=\sum x_{i} y_{j} J_{i j}
\end{aligned}
$$

Covariance:-
Covariance $\& ~ X \& Y$ is devoted by

$$
\operatorname{Cov}(x, y)=E(x y)-\mu_{x} \mu_{y}
$$

Correlation:-
$+J_{m n}$

$$
\begin{aligned}
& \text { co-relation of } x \& y \text { y denoted by } \\
& \text { cav }(x x(y) \in(E)(x y) \\
& \text { Not } \quad \rho(x, y)=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}} \\
& \text { in } \quad{ }_{x}^{2}=E\left(x^{2}\right)-\mu_{x}^{2} \\
& \sigma_{y}^{2}=E\left(y^{2}\right)-\mu_{y}^{2} \\
& E\left(x^{2}\right)=\sum x_{i}^{2} f\left(x_{i}\right) \\
& E\left(y^{2}\right)=\sum y_{j}^{2} g\left(y_{j}\right)
\end{aligned}
$$

NOTE: If $x \& y$ are independent random variably then (1) $E(x y)=E(x)$. $E(x)$ $Q_{Q} \operatorname{Cov}(x, y)=0$ \& hence $\rho(x, y)=0$
\qquad
problems
(1) The Joint distribution of two random variables $x \& y$ is as follows.

x		-4	2
x	$+1 / 8$	$1 / 4$	$1 / 8$
1	$1 / 4$	$1 / 8$	$1 / 8$
5			

compute
(1) $E(x)$ and $E(Y)$
(2) $E(x y)$
(3) $\operatorname{cov}(x, y)$
(d) σ_{x}, σ_{y}

Son:

$x y$	-4	$\&$	7	sum	
1	$1 / 8$	$1 / 4$	$1 / 8$	$1 / 2$	$f(x)$
5	$1 / 4$	$1 / 8$	$1 / 8$	$1 / 2$	
sum	$3 / 8$	$3 / 8$	$1 / 4$	1	

$$
\text { (4) } \begin{aligned}
E(x) & =\sum x_{1} f\left(x_{0}\right) \\
& =1 \times 1 / 2+5 \times 1 / 2 \\
& =1 / 2+5 / 2 \\
& =6 / 2 \\
E(x) & =3
\end{aligned}
$$

(2) $E(Y)=\sum y_{j} g\left(y_{j}\right)$

$$
=-4 \times 3 / 8+2 \times 3 / 8+
$$

$7 \times 1 / 4$

$$
=-\frac{12}{8}+6 / 8+7 / 4
$$

$$
=\frac{-12+6+14}{8}
$$

$$
=8 / 8 \quad=1 \Rightarrow E(y)=1 /
$$

They

$$
\begin{aligned}
& \mu_{x}=E(x)=3 \\
& \mu_{y}=E(y)=1
\end{aligned}
$$

\qquad
(2)

$$
\begin{aligned}
E(x y)= & \sum_{i} x_{i} y_{j} J_{i j} \\
= & (1)(-4)\left(y_{8}\right)+(1)(2)\left(y_{4}\right)+(1)(7)(1 / 8) \\
& +5(-4)\left(y_{4}\right)+5(2)\left(y_{8}\right)+5(7)(1 / 8) \\
= & -1 / 2+1 / 2+7 / 8-5+5 / 4+35 / 8 \\
= & \frac{42}{8}-\frac{15}{4} \\
= & \frac{42-30}{8} \\
= & \frac{12}{8}
\end{aligned}
$$

$$
E(x y)=\frac{3}{2}
$$

(3)

$$
\begin{aligned}
\operatorname{cov}(x, y) & =E(x, y)-\mu_{x} \mu_{y} \\
& =\frac{3}{2}-(3)(1) \\
& =\frac{3-6}{2} \\
& =-3 / 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) } \sigma^{2} x=E\left(x^{2}\right)-\mu_{x}^{2} \\
& E\left(x^{2}\right)=\sum x^{2} f\left(x_{i}\right) \\
& =(1)^{2}\left(y_{2}\right)+5^{2}\left(y_{2}\right) \\
& =1 / 2+\frac{25}{2} \\
& =26 / 2 \\
& E\left(x^{2}\right)=13 \| \\
& \sigma_{x}^{2}=18-(3)^{2}=13-9=411 \\
& \sigma_{x}=\sqrt{4} \Rightarrow \sigma_{x}=2 / 1 \\
& E N \sigma_{y}^{2}=E\left(y^{2}\right)-\mu_{y}^{2} \\
& E\left(y^{2}\right)=\sum y_{j}^{2} \cdot g\left(y_{j}\right) \\
& E\left(y^{2}\right)=(-4)^{2}(3 / 8)+2^{2}(3 / 8)+f^{2}(1 / 4) \\
& =16 \times 3 / 8+4 \times 3 / 8+49 \times 1 / 4 \\
& =\frac{48+12+98}{8} \\
& =\frac{15879}{84}
\end{aligned}
$$

\qquad
\qquad

$$
\begin{aligned}
& E\left(x^{2}\right)=\frac{79}{4} \\
& \sigma^{2} x y=\frac{79}{4}-(1)^{2}=\frac{75}{4} \\
& \sigma y=\sqrt{75 / 4}=4.33 / /
\end{aligned}
$$

(2) The Joint probability digmibution table for two random variables X and Y is of follows.

x x	-2	-1	4	5
1	0.1	0.2	0	0.3
2	0.2	0.1	0.1	0

all Compute
(9) Expectation op x, y and $x y$
(2) SODs of x, y
(3) Covariance $q x$ and y

Further Verify that x and y are dependent random Variable\&

Sol:	y	-2	-1	4	5
	sum				
1	0.1	0.2	0	0.3	0.6
2	0.2	0.1	0.1	0	0.4
Sum	0.3	0.3	0.1	0.3	1

Last column \& lat now \qquad are marginal probability
distributions
(2)

$$
\begin{array}{rlr}
E(x)=\sum x_{1} f\left(x_{i}\right) & E(y)=\sum y . g(y) \\
& =0(0.6)+2(0.4) & =-2(0.3)+ \\
& =0.6+0.8 & (-1)(0.3)+ \\
E(x)=1.4 / / & \quad 4(0.1)+ \\
E(x)=\mu_{x}=1.4 / / & 5(0.3) \\
E(x y)=\sum x_{i} y_{j} J_{i j} & E(y)=1 \\
& \\
=(1)(-2)(0.1)+(1)(-1)(0.2)+(1)(4)(0) \\
+(1)(5)(0.3)+2(-2)(0.2)+2(-1)(0.1) \\
& +2(4)(0.1)+2(5)(0) & \\
=0.9 / 1
\end{array}
$$

(a)

$$
\begin{aligned}
& \sigma^{2} x=E\left(x^{2}\right)-\mu_{x}^{2} \quad \& \sigma^{2} y=E\left(y^{2}\right)-\mu_{y}^{2} \\
& E\left(x^{2}\right)=\sum x_{i}^{2} f\left(x_{i}\right) \\
& =(1)^{2}(0.6)+2^{2}(0.4) \\
& =0.6+1.6 \\
& E\left(x^{2}\right)=2.2 \\
& \begin{aligned}
\sigma^{2} x & =E\left(x^{2}\right)-\mu_{x}^{2} \\
& =2.2-(1.4)^{2} \\
& =0.24
\end{aligned}
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& \sigma_{x}=\sqrt{0.24} \\
& \sigma_{x}=0.489
\end{aligned}
$$

$$
E\left(y^{2}\right)=\sum y_{j}^{2} g\left(y_{j}\right)
$$

$$
=(-2)^{2}(0.3)+(-1)^{2}(0.3)+u^{2}(0.1)+5^{2}(0.3)
$$

$$
=u(0.3)+0.3+16(0.1)+25(0.3)
$$

$E\left(y^{2}\right)=10.6$

$$
\sigma^{2} y=E\left(y^{2}\right)-\mu^{2} y
$$

$$
\sigma^{2} y=10 \cdot 6-1^{2}
$$

$$
=9 \cdot 6
$$

$$
\begin{aligned}
& \sigma_{y}=\sqrt{9.6}=3.09 \\
& \sigma_{x}=0.489 \quad \sigma_{y}=3.09
\end{aligned}
$$

(3)

$$
\begin{aligned}
\operatorname{cov}(x, y) & =E(x y)-E(x) E(y) \\
& =0.9-(1.4)(1) \\
& =-0.5
\end{aligned}
$$

If $x \& y$ are independent random variably we meyt have $f\left(x_{i}\right) g\left(y_{j}\right)=T_{i j}$

Now $f\left(x_{1}\right) g\left(y_{1}\right)=(0.6)(0.3)=0.18$
but $J_{11}=0.1$

$$
\begin{gathered}
0.18 \neq 0.1 \\
i . e \quad f\left(x_{1}\right) g\left(y_{1}\right) \neq J_{11}
\end{gathered}
$$

11^{14} for other value ago condition is not satisfied.
hence we conclude that x \& y are dependent random Variables.
(3) Doyourgelf

The Joint probability distribution, for two random variables x and y is as follows

$x y$	-2	5	8
1	0.21	0.35	0.14
2	0.09	0.15	0.06
determine the marginal probability			

(7) $E(x y), E(x), E(y)$
(2) $\operatorname{cov}(x, y)$
\qquad
\qquad
(4) Suppose x and y are independent random Variably with the following respective distribution, find the Joint distribution of x and y. Also verify that $\operatorname{cov}(x, y)=0$

x_{i}	1	2					
$f\left(x_{i}\right)$	0.7	0.3	\quad	y_{j}	-2	5	8
:---:	:---:	:---:	:---:				
$g\left(y_{j}\right)$	0.3	0.5	0.2				

SO 1 ${ }^{n}$

$x+y$	$y_{1}=-2$	$y_{2}=5$	$y_{3}=8$	$f\left(x_{i}\right) / \operatorname{sim}$
$x_{1}=1$	J_{11}	J_{12}	J_{13}	0.7
$x_{2}=2$	J_{21}	J_{22}	J_{23}	0.3
$g\left(y_{j}\right) \mid \sin$	0.3	0.5	0.2	1

Ti are obtained on multiplication of marginal entries

$$
\begin{aligned}
& J_{11}=(0.3)(0.7)=0.21 \\
& J_{12}=(0.7)(0.5)=0.35 \\
& J_{13}=(0.7)(0.2)=0.14 \\
& J_{21}=(0.3)(0.3)=0.09 \\
& J_{22}=(0.5)(0.3)=0.15 \\
& J_{23}=(0.3)(0.2)=0.06
\end{aligned}
$$

Joint digmibution table is

$x y$	-2	5	8	$f\left(x_{i}\right) /$ sum
1	0.21	0.35	0.14	0.7
2	0.09	0.15	0.06	0.3
gi y sum	0.3	0.5	0.2	1

$$
\begin{aligned}
& \operatorname{Cov}(x, y)=E(x y)-\pi x M y \\
& \mu_{x}=E(x)=\sum x_{i} f\left(x_{i}\right) \\
&=(1)(0.7)+2(0.3) \\
&=1.3 \\
& \mu_{y}=E(y)=\sum y_{j} g\left(y_{j}\right) \\
&=(-2)(0.3)+(5)(0.5)+8(0.2) \\
&=3.5 \| \\
& E(x y)=\sum x i y_{j} J_{i j} \\
&=(1)(-2)(0.21)+(1)(5)(0.35)+(1)(8)(0.14) \\
&+(2)(-2)(0.09)+(2)(5)(0.15)+(2)(8)(0.06) \\
&=-0.42+1.75+1.12-0.36+1.5+0.96 \\
&=4.55
\end{aligned} \quad \begin{aligned}
\text { CON }(x, y) & =4.55-(1.3)(3.5) \\
& =4.55-4.55 \\
& =0
\end{aligned}
$$

\qquad
\qquad
(5) x and y are independent variables x tales value $2,5,7$ with probability $y_{2}, 1 / 4,1 / 4$ respectively. Y take valued $3,4,5$ with the probability $1 / 3,1 / 3,1 / 3$
(a) Find the Joint probability dysibution oo x and y.
(B) S.T the Covariance of x and y is equal to zero
(c) Find the probability distribution op $z=x+y$

Sol	n^{n} x	3	4	5
2	J_{11}	J_{12}	J_{13}	y_{2}
5	J_{21}	J_{22}	J_{23}	y_{4}
7	J_{31}	J_{32}	J_{33}	y_{4}
$g\left(y_{j}\right)$	y_{3}	$1 / 3$	y_{3}	1

$$
\begin{array}{ll}
J_{i j}=f\left(x_{i}\right) g\left(y_{j}\right) & \\
J_{11}=(1 / 3)(1 / 2)=1 / 6 & J_{21}=1 / 3(1 / 4)=1 / 12 \\
J_{12}=(1 / 3)(1 / 2)=1 / 6 & J_{22}=1 / 3(1 / 4)=1 / 12 \\
J_{13}=(1 / 3)(1 / 2)=1 / 6 & J_{23}=1 / 3(1 / 4)=1 / 12
\end{array}
$$

$$
J_{31}=1 / 12, J_{32}=1 / 12, J_{33}=1 / 12
$$

x	y	3	4	5
2	$y / 6$	$1 / 6$	y_{6}	$1 / 2$
5	y_{12}	y_{12}	y_{12}	$1 / 4$
7	y_{12}	$1 / 2$	$1 / 2$	$1 / 4$
$g\left(y_{i}\right)$	$1 / 3$	$1 / 3$	$1 / 3$	1

$$
\begin{aligned}
& \text { (1) } \operatorname{cov}(x y)=E(x y)-\mu_{x} \mu_{y} \\
& \mu_{x}=E(x)=\sum x_{i} f\left(x_{i}\right) \\
& =2(1 / 2)+5\left(y_{4}\right)+f\left(y_{4}\right) \\
& =1+5 / 4+7 / 4 \\
& =1+\frac{12}{4} \\
& =16 / 411 \\
& \mu_{x}=4 / / \\
& \mu_{y}=E(y)=\sum y_{j} g\left(y_{j}\right) \\
& \mu_{y}=(1 / 3)(3)+4\left(y_{3}\right)+5(1 / 3) \\
& =\frac{3+4+5}{3} \\
& =\frac{12}{3}=4 / 4
\end{aligned}
$$

\qquad
\qquad

$$
\begin{aligned}
& E(x y)=\sum x_{i} y_{j} J_{i j} \\
= & (2)(3)\left(y_{6}\right)+(2)(4)\left(y_{6}\right)+(2)(5)\left(y_{6}\right)+5(3)\left(y_{12}\right) \\
& +5(4)\left(y_{12}\right)+(5)(5)\left(y_{12}\right)+7(3)\left(y_{12}\right)+ \\
& f(4)\left(y_{12}\right)+7(5)\left(y_{12}\right) \\
= & 16 / 1
\end{aligned}
$$

$\operatorname{cov}(x, y)=16-u(u)=16-16=0$
(c) $z=x+y$
let $z_{i}=x_{i}+y_{i}$

$$
Z_{i}=\{5,6,7,8,9,10,10,11,12\}
$$

corrupanding probabilitiel are
$y_{6}, y_{6}, y_{6}, y_{12}, y_{12}, y_{12}, y_{12}, y_{12}, y_{12}, y_{12}$
probability digribution of $z=x+y$ i $~$ of foven

$$
\begin{aligned}
& \begin{array}{r|c|c|c|c|c|c|c|c}
\hline z & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline P(z) & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 12 & 1 / 12 & y_{12}+1 / 12=1 / 6 & 1 / 2 & 1 / 12
\end{array} \\
& \begin{aligned}
\sum p(z) & =3 / 6+2 / 12+1 / 6+1 / 126
\end{aligned} \\
& \\
&
\end{aligned}
$$

$$
=1
$$

(*) Given the following joint digtribution of the random variably $x \& y$, find the correlpanding marginal distribution aye compute covariance commetration

of random variably x			
$x y$	1	3	9
2	$1 / 8$	$1 / 24$	$1 / 12$
4	$1 / 4$	$1 / 4$	0
6	$1 / 8$	$1 / 24$	$1 / 12$

Son: marginal distributions of $x \& Y$ is

x_{i}	2	4	6	y_{j}	1	3	9
$f\left(x_{i}\right)$	$1 / 4$	$1 / 0 z$	$1 / 4$	$g\left(y_{j}\right)$	$1 / 2$	$1 / 3$	$1 / 6$
\downarrow							

For ding $f\left(x_{1}\right)=1 / 8+1 / 24+1 / 12=12 / 48=1 / 4$

$$
\begin{align*}
& f\left(x_{2}\right)=1 / u+1 / u+0=2 / u=1 / 2 \tag{7}\\
& f\left(x_{3}\right)=1 / 8+1 / 2 u+1 / 12=1 / 4
\end{align*}
$$

$1114 \quad g\left(y_{1}\right)=1 / 8+1 / 4+1 / 8=2 / 8+1 / 4=2 / 4=1 / 2$

$$
\begin{aligned}
& g(1 / 2)=\frac{1}{24}+1 / 4+1 / 24=2 / 24+1 / 4=1 / 12+1 / 4=\frac{1+3}{12}=1 / 3 \\
& g(43)=1 / 12+0+1 / 12=2 / 12=1 / 6
\end{aligned}
$$

\qquad
PRAKASH Page \qquad

$$
\begin{aligned}
& \operatorname{Oov}(x, y)=E(x y)-\mu_{x} \mu_{y} \\
& E(x)=\mu_{x}=\sum x_{i} f\left(x_{i}\right) \\
& =(2)\left(y_{u}\right)+(u)\left(y_{2}\right)+(6)(1 / 4) \\
& =4 / / \\
& E(y)=\mu_{y}=\sum y_{j} g\left(y_{j}\right) \\
& =(1)\left(y_{2}\right)+3\left(y_{3}\right)+9\left(y_{6}\right) \\
& =3 / / \\
& \begin{aligned}
& E(x y)= \sum x_{i} y_{j} J_{i j} \\
&=(2)(1)(y / 8)+2(3)(1 / 2 u)+2(9)\left(y_{12}\right) \\
&+(u)(1)(y u)+(u)(3)(y u)+(u)(9)(0)+(6)(1)(1 / 8) \\
&+(6)(3)(y / 2 u)+(6)(9)\left(y_{12}\right) \\
& E(x y)=12 \\
& \operatorname{Cov}(x, y)=12-u(3) \\
&=0
\end{aligned}
\end{aligned}
$$

(4) The Joint probability digmbution of two discrete fandom variably X a y y given by $f(x, 4)=k(2 x+y)$ where x \&y are integers F°;

$$
0 \leqslant x \leqslant 2,0 \leqslant y \leqslant 3
$$

(a) Find K
(b) Find the marginal dymibution of $x \& y$ (0) S.T the random variables x \& Y are dependent

So ln ${ }^{n}$

$$
\begin{aligned}
& x=\left\{x_{i}\right\}=\{0,1,2\} \\
& y=\left\{y_{j}\right\}=\{0,1,2,3\}
\end{aligned}
$$

$f(x, y)=k(2 x+y)$ Joint probability distribution table is

distribution table is					
x	y	0	1	2	3
0	0	K	$2 k$	$3 k$	$6 k$
1	$2 k$	$3 k$	$4 k$	$5 k$	$14 k$
2	$4 k$	$5 k$	$6 k$	$7 k$	$22 k$
Sum	$6 k$	$9 K$	$12 K$	$15 k$	$42 K$

(a) we myst have $42 K=1$

$$
k=1 / 42
$$

(b) marginal probability distribution is

x_{i}	0	1	2	
$f\left(x_{i}\right)$	$6 / 42=1 / 7$	$14 / 42=1 / 3$	$22 / 42=11 / 21$	
y_{j}	0	1	2	3
$g_{\left(y_{j}\right)}$	$6 / 42=1 / 7$	$9 / 42=3 / 14$	$12 / 42=2 / 7$	$15 / 42=\frac{5}{14}$

(0) It can be ealily seen that $f\left(x_{1}\right) g\left(y_{i}\right) f_{i j}$ hence random vasiably are dependent.

Stochastic process\& PRAKASH Page

Definitions!-
probability vector:
The vector $v=\left(v_{1}, v_{2}, v_{3}, \ldots v_{n}\right)$
Is called a probability vector if each one of its components are non negative \& their fum is equal to unity.
ex: $V=(1,0)$

$$
\begin{aligned}
& v=(1 / 2,1 / 2) \\
& v=(1 / u, 1 / u, 1 / 2)
\end{aligned}
$$

are all probability vector
Stochastic matrix:- A square matrix PIs said to be stochastic matrix e if every row in the form of a probability vector.

$$
\text { ex: } \sqrt{11}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

(2) $\left[\begin{array}{cc}1 / 2 & 1 / 2 \\ 0 & 1\end{array}\right]$

Reqular otochaftic matrix
A stochastic matrix pis said to regular stoke on tic manx if all the entries of some power p^{n} are toe
\qquad
\qquad
$e x: A=\left[\begin{array}{ll}0 & 1 \\ y_{2} & y_{2}\end{array}\right]$
Comider $A^{2}=\left[\begin{array}{ll}0 & 1 \\ 1 / 2 & 1 / 2\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 / 2 & 1 / 2\end{array}\right]=\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 3 / 4 & 3 / 4\end{array}\right]$
Al a regular stochastic matrix
Properties of Regular stochastic matrix (1) (a) p hay a unique fixed point

$$
x=\left(x_{1}, x_{2} \cdots x_{n}\right) \quad \ni ; \quad x p=x
$$

(b) p hay unique fixed probability vector $V=\left(V_{1}, v_{2} \ldots V_{n}\right) \ni ; V P=V$ where $V_{i}=\frac{x_{i}}{\sum_{i=1}^{n} x_{i}}$
(c) p^{2}, p^{3} approches the matrix V whose rocos are fixed probability vector V.
(d) If u is any probability vector then the sequence of vectors $u p, u p^{2}$up approches the unique fixed probability vector V.
problems:
\qquad
(1) If $A=\left[\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right]$ is a Stochastic
matrix and $v=\left[v_{1}, v_{2}\right]$ is a probability vector S.T VA is ago a probability vector.
Sol: By data

$$
\begin{aligned}
& a_{1}+a_{2}=1, \quad b_{1}+b_{2}=1, \quad r_{1}+r_{2}=1 \\
& V A=\left[\begin{array}{ll}
v_{1} & r_{2}
\end{array}\right]\left[\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right] \\
& V A=\left[v_{1} a_{1}+v_{2} b_{1} \quad v_{1} a_{2}+v_{2} b_{2}\right]
\end{aligned}
$$

we have to probability vector So, $\quad v_{1} a_{1}+v_{2} b_{1}+v_{1} a_{2}+v_{2} b_{2}=1$

$$
\begin{gathered}
v_{1}\left(a_{1}+a_{2}\right)+v_{2}\left(b_{1}+b_{2}\right)=1 \\
v_{1}(1)+v_{2}(1)=1 \\
v_{1}+v_{2}=1
\end{gathered}
$$

\therefore VA is a probability vector
(2) Find the unique fixed probability Vector of the regular stochastic matrix $A=\left[\begin{array}{ll}3 / 4 & 1 / 4 \\ 1 / 2 & 1 / 2\end{array}\right]$
\qquad
\qquad
So. ${ }^{n}$. we have to find $v=(x, y)$ where

$$
\begin{align*}
& x+y=1 \quad \forall ; \quad \vee A=V \\
& {[x, y]\left[\begin{array}{ll}
3 / 4 & 1 / 4 \\
1 / 2 & 1 / 2
\end{array}\right]=[x, y]} \\
& {\left[\frac{3}{4} x+\frac{y}{2}, \frac{x}{4}+\frac{y}{2}\right]=[x, y]} \\
& \frac{3}{4} x+\frac{y}{2}=x \tag{1}\\
& \frac{3 x}{4}+\frac{4}{2}=y-\text { (2) } \\
& w \cdot K \cdot T \quad x+y=1 \\
& y=1-x \tag{1}
\end{align*}
$$

$$
\begin{array}{r}
\frac{3}{4} x+\frac{1-x}{2}=x \\
3 x+2(1-x)=4 x \\
3 x+2-2 x=4 x \\
3 x-2 x-4 x+2=0 \\
-2 x+2=0 \\
-3 x=-2 \\
x=2 / 3
\end{array}
$$

$$
\begin{aligned}
& y=1-x=1-\frac{2}{3} \\
& y=\frac{1}{3}, \quad v=(x, y)=(2 / 3,1 / 3)
\end{aligned}
$$

Thus $(2 / 3,1 / 3)$ is the unique fixed probability vector.
(2) Find the unique fixed probability vector for the regular stochastic matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 / 6 & 1 / 2 & 1 / 3 \\
0 & 2 / 3 & 1 / 3
\end{array}\right]
$$

Son': we have to find $v=(x, y, z)$
where $x+y+z=1 \Rightarrow \quad V A=V$

$$
\begin{aligned}
& {[x, y, z]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 / 6 & 1 / 2 & 1 / 3 \\
0 & 2 / 3 & 1 / 3
\end{array}\right]=[x, y, z]} \\
& {[0+y / 6+0, \quad x+y / 2+2 / 3 z, 0+y / 3+z / 3]=[x, y, z} \\
& y / 6=x, \quad x+y / 2+2 / 3 z=y, y / 3+z / 3=z \\
& y=6 x, \quad 6 x+3 y+4 z=6 y, \quad y+z=3 z \\
& y=6 x, \quad 6 x-3 y+4 z=0, \quad y-2 z=0 \\
& -1
\end{aligned}
$$

方
W.K.T $\quad x+y+z=1$

$$
\begin{gathered}
z=1-x-y \\
\text { w.K.T } \quad y=6 x \\
z=1-x-6 x \\
z=1-7 x
\end{gathered}
$$

(3) becomes

$$
\begin{aligned}
& y-2 z=0 \\
& y-2(1-7 x)=0 \\
& 6 x-2+14 x=0 \\
& 20 x-2=0 \\
& 20 x=2 \\
& x=1 / 10 \\
& = \\
& \begin{aligned}
& y=6 x=6 \times 1 / 10 \\
& y=3 / 5,=1-7 x \\
&=1-7 \times 1 / 10 \\
&=1-7 / 10 \\
& z=\frac{3}{10}
\end{aligned} \\
& \begin{aligned}
y
\end{aligned} \\
& \begin{aligned}
& y \\
& 20
\end{aligned}
\end{aligned}
$$

required unique fixed probability vector V if given by $V=(1 / 10,3 / 5,3 / 0)$
\qquad
\qquad
(4) $S \cdot T \quad P=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 / 2 & 1 / 2 & 0\end{array}\right]$ is a regular associated unique fixed probability vector

Sol confider $P^{2}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 / 2 & 1 / 2 & 0\end{array}\right]\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 / 2 & 1 / 2 & 0\end{array}\right]$

$$
\begin{gathered}
p^{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 / 2 & 1 / 2 & 0 \\
0 & 1 / 2 & 1 / 2
\end{array}\right] \\
p^{3}=p \cdot p^{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 / 2 & 1 / 2 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 / 2 & 1 / 2 & 0 \\
0 & 1 / 2 & 1 / 2
\end{array}\right] \\
p^{3}=\left[\begin{array}{lll}
1 / 2 & 1 / 2 & 0 \\
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right] \\
p^{4}=p \cdot p^{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 / 2 & 1 / 2 & 0
\end{array}\right]\left[\begin{array}{lll}
1 / 2 & 1 / 2 & 0 \\
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2 \\
1 / 4 & 1 / 2 & 1 / 24
\end{array}\right. \\
p^{5}=p \cdot p^{4}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 / 2 & 1 / 2 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2 \\
1 / 4 & 1 / 2 & 1 / 4
\end{array}\right]=\left[\begin{array}{lll}
1 / 4 & 1 / 4 & 1 / 2 \\
1 / 4 & 1 / 2 & 1 / 4 \\
1 / 8 & 3 / 8 & 1 / 2
\end{array}\right]
\end{gathered}
$$

we observe that p^{5} all the entries are tee.

Thees p is a regular stochastic matrix we have to find $v=(a, b, c)$ where

$$
\begin{align*}
& a+b+c=1 \Rightarrow ; \quad V P=V \\
& {\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 / 2 & 1 / 2 & 0
\end{array}\right]=[a, b, c]} \\
& {\left[0+0+\frac{c}{2}, a+0+\frac{c}{2}, 0+b+0\right]=[a, b, c]} \\
& {\left[\frac{c}{2}, a+\frac{c}{2}, \quad b\right]=[a, b, c]} \\
& \frac{c}{2}=a, \quad a+\frac{c}{2}=b, \quad b=c \\
& \begin{array}{rrr}
-2 a, & a+\frac{c}{2}=b, & b=c \\
\text { - (1) } & -(2)
\end{array} \tag{3}\\
& b=c \\
& b=2 a
\end{align*}
$$

we $b=2 a$ in (2)

$$
\begin{aligned}
a+\frac{c}{2} & =2 a \\
\frac{c}{2} & =a \\
c & =2 a
\end{aligned}
$$

$$
\omega \cdot k \cdot T \quad a+b+c=1
$$

$$
\begin{gathered}
a+2 a+2 a=1 \\
5 a=1 \\
a=\frac{1}{5} \\
\therefore b=\frac{2}{5}, \quad c=2 / 5
\end{gathered}
$$

They $(1 / 5,2 / 5,2 / 5)$ is the required unique fixed probability vector of P.
(5) Find the unique fixed probability vector of the regular stochastic matrix

$$
P=\left[\begin{array}{cccc}
0 & 1 / 2 & 1 / 4 & 1 / 4 \\
1 / 2 & 0 & 1 / 4 & 1 / 4 \\
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 0
\end{array}\right]
$$

Sol. we have to find $v=(a, b, c, d)$ where $a+b+c+d=1 \quad \ni ; \quad V P=V$

$$
\left.\begin{array}{rl}
{\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]\left[\begin{array}{cccc}
0 & 1 / 2 & 1 / 4 & 1 / 4 \\
1 / 2 & 0 & 1 / 4 & 1 / 4 \\
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]} \\
{\left[0+\frac{b}{2}+\frac{c}{2}+\frac{d}{2}, \frac{a}{2}+0+\frac{c}{2}+\frac{d}{2}, \frac{a}{4}+\frac{b}{4}+0+0\right.} \\
& d / 4+b / 4+0+0
\end{array}\right]=\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]
$$

\qquad

$$
\left[\begin{array}{l}
{\left[\frac{b}{2}+\frac{c}{2}+\frac{d}{2}, \frac{a}{2}+\frac{c}{2}+\frac{d}{2}, \frac{a}{4}+\frac{b}{4}, \frac{a}{4}+\frac{b}{4}\right]=[a,} \tag{1}\\
\frac{b}{2}+\frac{c}{2}+\frac{d}{2}=a \Rightarrow b+c+d=2 a-\text {-1 } \\
\frac{a}{2}+\frac{c}{2}+\frac{d}{2}=b \Rightarrow a+c+d=2 b-\text { (2) } \\
\frac{a}{4}+\frac{b}{4}=c \Rightarrow a+b=4 c-\text {-(3) } \\
\frac{a}{4}+\frac{b}{4}=d \Rightarrow a+b=4 d \\
\text { w.K.T - (4) } \\
a+b+c+d=1 \\
b+c+d=1-a
\end{array}\right.
$$

but we (1) $2 a=1-a$

$$
\text { ut we (1) } \begin{aligned}
2 a & =1 \\
3 a & =1 \Rightarrow a=1 / 3 \\
a+b+c+d & =1 \\
\text { we (8) } a+c+d & =1-b \\
4 \quad 2 b & =1-b \\
3 b & =1 \\
b & =1 / 3
\end{aligned}
$$

b, c, d]
\qquad
b, c, d

$$
\begin{aligned}
& a+b=4 d \\
& \frac{1}{3}+\frac{1}{3}=4 d \\
& \frac{2}{3}=4 d \\
& d=1 / 6
\end{aligned}
$$

Thy $V=(1 / 3,1 / 3,1 / 6,1 / 6)$ is the required unique fixed probability vector

Markov chains
A stochastic process which is 7 ; the generation of the probability distribution depend only on the prepent state is called markov process.
on countrobly (hind) If this state space is dis arete (finite we say that the process is a dycrete state process s (6) chain. Then the markov process is known of a markov chain.

It is defined as
(4) Each outcome belong to the finite set of the outcomes $\left\{a_{1}, a_{2}, \ldots a_{m}\right\}$
(ii) The outcome of any trial depend at most upon the outcome of the immediate proceeding trial.
probability Pis is associated with every pair of sate $\left(a_{i}, a_{j}\right)$ that a_{j} occurs immediatly after a_{i} occurs such a stochastic process is called a finite markox chain

Trangistion probability matrix TPM of order m is denoted by p

$$
P=\left[\begin{array}{cccc}
p_{11} & p_{12} & \cdots & p_{1 m} \\
p_{21} & p_{22} & \cdots & p_{2 m} \\
\vdots & \vdots & \cdots & \vdots \\
p_{m 1} & p_{m 2} & & p_{m m}
\end{array}\right]
$$

elements of p have the following properties

$$
\begin{aligned}
& \text { (1) } 0 \leq p_{i j} \leq 1 \\
& \text { (2) } \sum_{j=1}^{m} P_{i j}=1 \\
& (i=1,2, \ldots m)
\end{aligned}
$$

The above 2 properticy satisfy the requirem -int of a stochastic matrix and hence we conclude that t raxyition matrix of a markov chain is a stochastic matrix.
\qquad
\qquad
Higher transition probabilities * The entry Pis in the tranfition probability matrix p of the markov chain is the probability that system changes from state a_{i} to a_{j} in a single step i.e $a_{i} \rightarrow a_{j}$

* The probability that system changes from state a_{i} to a_{i} in exactly n steps if denoted by $p_{i j}^{(n)}$
* Let $p(n)=\left[p_{1}^{(n)}, p_{2}(n) \ldots p_{m}^{(n)}\right]$ denote the $n^{\text {th }}$ step probability diyribution at the end of n steps. Thus we have

$$
\begin{gathered}
p^{(1)}=p^{(0)} p, p(2)=p^{(1)} p=p^{(0)} \cdot p \cdot p=p^{(0)} p^{2} \\
p^{(n)}=p^{(0)} p n
\end{gathered}
$$

problems
(1) The transistion matrix p of a markov chain is given by $\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 3 / 4 & 1 / 4\end{array}\right]$ with the initial probability distribution $p^{(0)}=(14,3 / 4)$ Define and find the following
(4) $p_{21}^{(2)}$
(2) $p_{12}^{(z)}$
(3) $p_{1}^{(2)}$
(2) the vector $p^{(0)} p^{(n)}$ approches
(3) the matrix p^{n} apperoches

Sop': Firgt we need to find p^{2}

$$
\begin{gathered}
p^{2}=P \cdot P=\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
3 / 4 & 1 / 4
\end{array}\right]\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
3 / 4 & 1 / 4
\end{array}\right] \\
P^{2}=\left[\begin{array}{ll}
5 / 8 & 3 / 8 \\
9 / 16 & 7 / 16
\end{array}\right]
\end{gathered}
$$

(i) $p_{21}{ }^{(2)}=9 / 16$ (ii) $P_{12}^{(2)}=3 / 8$
(iii) $p^{(2)}=p(0) p(2)$

$$
\begin{aligned}
& =[y / u, 3 / u]\left[\begin{array}{ll}
5 / 8 & 3 / 8 \\
9 / 16 & 7 / 16
\end{array}\right] \\
& =\left[\frac{37}{64}, \frac{27}{64}\right]=\left[p_{1}^{(2)}, p_{2}^{(2)}\right]
\end{aligned}
$$

(iv) $p_{1}^{(2)}=\frac{37}{64}$
i.e $p_{1}^{(2)}$ is the probability that the process in in the state a, after 2 jtep s
(v) The vector $p(0) p^{n}$ approchy the unique fixed probability vector P

Let $V=(x, y)$ where $x+y=1$

$$
V P=V
$$

\qquad

$$
\begin{gathered}
{[x, y]\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
3 / 4 & 1 / 4
\end{array}\right]=[x, y]} \\
{\left[\frac{x}{2}+\frac{3 y}{4}, \frac{x}{2}+\frac{y}{4}\right]=[x, y]} \\
\frac{x}{2}+\frac{3 y}{4}=x \\
2 x+3 y=4 x \\
3 y=2 x \\
\text { but } x+y=1 \\
y=1-x \\
3(1-x)=2 x \\
3-3 x=2 x \\
3=5 x \\
x=3 / 5 \\
\Rightarrow
\end{gathered}
$$

The vector $p^{(0)} p^{n}$ approches the vector $(3 / 5,2 / 5)$
(vi) p^{n} approches the matrix $\left[\begin{array}{ll}3 / 5 & 2 / 5 \\ 3 / 5 & 2 / 5\end{array}\right]$
P^{n} approchy the marx v whose rocos are each the fixed probability vector P.
(2) The T.P. m of a markov chain is given by $p=\left[\begin{array}{ccc}1 / 2 & 0 & 1 / 2 \\ 1 & 0 & 0 \\ 1 / 4 & 1 / 2 & 1 / 4\end{array}\right]$
and the initial probability diymibution

$$
\text { is } \quad p^{(0)}=(1 / 2,1 / 2,0)
$$

Find $p_{13}^{(2)}, p_{23}^{(2)}, p^{(2)}$ and $p_{1}^{(2)}$
Son: Let wy find two step transition matin p^{2}

$$
\begin{aligned}
& p^{2}=\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
1 & 0 & 0 \\
1 / 4 & 1 / 2 & 1 / 4
\end{array}\right]\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
1 & 0 & 0 \\
1 / 4 & 1 / 2 & 1 / 4
\end{array}\right]=\left[\begin{array}{ccc}
3 / 8 & 1 / 4 & 3 / 8 \\
1 / 2 & 0 & 1 / 2 \\
11 / 6 & 1 / 8 & 3 / 16
\end{array}\right] \\
& P_{13}^{(2)}=3 / 8 \text { and } P_{23}^{(2)}=1 / 2 \\
& p(2)=p(0) p(2)=[1 / 2,1 / 2,0]\left[\begin{array}{lll}
3 / 8 & 1 / 4 & 3 / 8 \\
1 / 2 & 0 & 1 / 2 \\
11 / 16 & 1 / 8 & 3 / 16
\end{array}\right] \\
& p^{(2)}=[7 / 16,1 / 8,7 / 16] \\
& P_{1}(2)=7 / 16
\end{aligned}
$$

\qquad
\qquad
(3) P.T the markov chain chose t.p.m is $p=\left[\begin{array}{ccc}0 & 2 / 3 & 1 / 3 \\ 1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 1 / 2 & 0\end{array}\right]$ is
irreducible find the comespanding stationary probability vector

SoliD we shall S.T P is a regular Stochastic matrix

$$
\begin{aligned}
& P^{2}=\left[\begin{array}{ccc}
0 & 2 / 3 & 1 / 3 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 2 / 3 & 1 / 3 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right] \\
& P^{2}=\left[\begin{array}{lll}
1 / 2 & 1 / 6 & 1 / 3 \\
1 / 4 & 7 / 12 & 1 / 6 \\
1 / 4 & 1 / 3 & 7 / 12
\end{array}\right]
\end{aligned}
$$

Since all the entry p^{2} are toe we conclude that K.P.m p is regular hence it is irreducible.
we shall find the fixed probability vector of P.
If $V=(x, y, z)$ we shan find V;

$$
v p=v \text { where } x+y+z=1
$$

$$
\left[\begin{array}{lll}
x, y, z
\end{array}\right]\left[\begin{array}{ccc}
2 / 3 & 1 / 3 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right]=\left[\begin{array}{lll}
x & y & z
\end{array}\right]
$$

\qquad
PRAKASH Poge. \qquad

$$
\begin{aligned}
& {\left[\frac{y}{\theta}+\frac{z}{2}, \frac{2}{3} x+\frac{z}{2}, \frac{x}{3}+\frac{y}{2}\right]=\left[\begin{array}{lll}
x & y & z
\end{array}\right]} \\
& \frac{y}{\theta}+\frac{z}{\theta}=x \\
& 2 x=y+z \Rightarrow y+z=2 x \Rightarrow 2 x-y-z= \\
& \frac{2}{3} x+\frac{z}{2}=y \Rightarrow 4 x+3 z=6 y \Rightarrow 4 x-6 y+1 \\
& \frac{x}{3}+\frac{y}{2}=z \Rightarrow 2 x+3 y=6 z \\
& 2 x+3 y-6 z=0 \text {-(8) } \\
& \text { w.K.T } \quad x+y+z=1 \\
& x=1-y-z \\
& \text { (1) } \Rightarrow \quad x_{1}+x+1+r+y+7 D F 10
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q PCAIRI- F10 }
\end{aligned}
$$

$$
\begin{aligned}
& 2+2 x+2 \pi+2 y+1+10
\end{aligned}
$$

$$
\text { (4) } \Rightarrow \begin{array}{r}
2(1-y-z)-y-z=0 \\
2-2 y-2 z-y-z=0 \\
2-3 y-3 z=0 \\
-3 y-3 z+2=0 \\
3 y+3 z-2=0 \tag{4}
\end{array}
$$

\qquad
\qquad

$$
\text { (2) } \Rightarrow \begin{gather*}
4(1-y-z)-2 y+3 z=0 \\
4-4 y-4 z-2 y+3 z=0 \\
4-10 y+z=0 \\
-10 y-z+4=0 \tag{5}
\end{gather*}
$$

Solve (4) \& (5)

$$
\begin{gathered}
3 y+3 z-2=0 \\
\Leftrightarrow 4 y=z=0 \\
-y+0=0 \\
y=0
\end{gathered}
$$

Solve (1) \& (2)

$$
\begin{gathered}
2 x-y-z=0 \\
\Leftrightarrow \frac{2 x+3 y-5 z=0}{-114+57}=0
\end{gathered}
$$

$$
-4 y+5 z=0-\text { (5) }
$$

Solve (a) \& (5)

$$
\begin{aligned}
3 y+3 z-2 & =0 \times 4 \\
-4 y+5 z & =0 \times 3 \\
-12 y+12 z-8 & =0 \\
-\sqrt{2 y+15 z} & =0 \\
27 z-8 & =0 \\
27 z & =8 \\
z & =8 / 27
\end{aligned}
$$

put z in (5)

$$
\begin{array}{r}
4 y-5\left(\frac{8}{27}\right)=0 \\
4 y-\frac{40}{27}=0 \\
4 y=\frac{40^{10}}{27} \\
y=\frac{10}{27} \\
x=1-y-z \\
=1-\frac{10}{27}-\frac{8}{27} \\
=\frac{27-18}{27} \\
=\frac{9}{27} \\
x=\frac{1}{3}
\end{array}
$$

Required stationary probability vector is $\left(V_{3}, \frac{10}{27}, \frac{8}{27}\right)$
(3) A habitual gambler is a member
of two clubs A and B. He visits either of the clubs everyday for playing cards. He never visits
club A on two Consecutive days. But if he visits club B on a particular day then the next day he is as likely to visit club B or club A. Find trampiti -on matrix of this markov chain. also (a) S.T the matrix is a regular stochastic matrix \& find the unique fixed probability vector.
(b) If the person had visited club B on monday, find the probability that he visits club A on Thurgday.

Sol: The trangition matrix p of markov Chain is formulated as

$$
P=A\left[\begin{array}{cc}
A & B \\
0 & 1 \\
1 / 2 & 1 / 2
\end{array}\right]
$$

(i) $p^{2}=\left[\begin{array}{cc}0 & 1 \\ 1 / 2 & 1 / 2\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 / 2 & 1 / 2\end{array}\right]=\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 4 & 3 / 4\end{array}\right]$

Since all the entry of p^{2} ax toe
$\therefore p$ is a regular stochaytic matrix Now we shall find unique fixed probability Vector

$$
v p=V
$$

\qquad

$$
\begin{gathered}
{\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 / 2 & 1 / 2
\end{array}\right]=\left[\begin{array}{ll}
x & y
\end{array}\right]} \\
{\left[\begin{array}{ll}
x+\frac{4}{2}, & x+\frac{4}{2}
\end{array}\right]=\left[\begin{array}{ll}
x & y
\end{array}\right]} \\
\frac{4}{2}=x \Rightarrow 2 x=y \\
2 x+y / 2=y \\
2 x+y=2 y \Rightarrow 2 x-y=0 \\
x+y=1 \\
y=1-x \\
w \cdot k \cdot T \\
2 x+1+x=2 \\
3 x+1=0 \\
3 x=+1 / 1
\end{gathered}
$$

Thus $V=(1 / 3,2 / 3)$
(b) let cay suppose monday as day 1 then thursday will be 3 days after monday Given that the perigon had vigited alub B on monday the probability that he vinits Club A after 3 days iq equivalent to finding a_{2}, 3) from p^{3}.
\qquad
PRAKASH Page \qquad

$$
\begin{gathered}
p^{3}=p^{2} \cdot p=\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 4 & 3 / 4
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 / 2 & 1 / 2
\end{array}\right]=\left[\begin{array}{ll}
1 / 4 & 3 / 4 \\
3 / 8 & 5 / 8
\end{array}\right] \\
a_{21}^{(3)}=3 / 8 \text { required probability }
\end{gathered}
$$

* A student's study habits ane as follows, if be studic one right, he is 70% sure not to study the nest night, on the other hand if he doynot study one night he y 60%. sure not to study the next night. In the long run how often doe he Study?
Sol ${ }^{n}$

$$
\begin{aligned}
& A \rightarrow \text { studying } \\
& B \rightarrow \text { not studying } \\
& P=A\left[\begin{array}{cc}
A & B \\
0.3 & 0.7 \\
0.4 & 0.6
\end{array}\right]
\end{aligned}
$$

we have to find unique fixed probabils V sector $V P=V$
where $V=(x, y)$

$$
\text { w. K., } x+y=1
$$

$\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}0.3 & 0.7 \\ 0.4 & 0.6\end{array}\right]=\left[\begin{array}{ll}x & y\end{array}\right]$

$$
\begin{aligned}
& {[0.3 x+0.4 y=0.7 x+0.6 y]=[x y]} \\
& 0.3 x+0.4 y=x \\
& 0.7 x+0.6 y=y
\end{aligned}
$$

$$
\begin{aligned}
& x+y=1 \\
& y=1-x \\
& 0.3 x+0.4-0.4 x=x \\
& -0.1 x-x=-0.4 \\
& +1.1 x=+0.4 \\
& x=\frac{0.4}{1.1} \\
& x=0.3636 / 1 \\
& y= \\
& =\frac{1}{11}
\end{aligned}
$$

Thu we can conclude that in the long run the student coll study $4 / 11$ of the time or 36.36% of the time.

* The man's smoking habits are as follows. If he smoky filter cigarette one week, he switch to non filter cigarette the nestweek with probability 0.2 on the other hand if he smokes non filter igareHes
\qquad
\qquad
one week there y a probability of 0.7 that he will smoke nonfilter cigarettes the next week as well. In the long run how often does he smoke filter cigareHy?

Son: A: Smoking filter Cigarettes
B: smoking non filter cigarettes State space of syytem $\{A, B\}$ Associated traryition matrix is

$$
P=A\left[\begin{array}{ll}
A & B \\
0.8 & 0.2 \\
0.3 & 0.7
\end{array}\right]
$$

we have to find unique fixed probability vector $V P=V$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
0.8 & 0.2 \\
0.3 & 0.7
\end{array}\right]=\left[\begin{array}{ll}
x & y
\end{array}\right]} \\
& {\left[\begin{array}{ll}
0.8 x+0.3 y & 0.2 x+0.7 y
\end{array}\right]=\left[\begin{array}{ll}
x & y
\end{array}\right]} \\
& 0.8 x+0.3 y=x, \quad 0.2 x+0.7 y=y \\
& 0.8 x-x+0.3 y=0, \quad 0.2 x+0.7 y-y=0 \\
& -0.2 x+0.3 y=0 \quad 0.2 x-0.3 y=0 \\
& -0 . k .1 \quad x+y=1 \quad y=1-x \\
& \text { (2. } x+0
\end{aligned}
$$

$$
\begin{aligned}
&-0.5 x=-0.3 \\
& x=\frac{0.3}{0.5} \\
& x=3 / 5 \text { or } 0.6 \\
& y=1-\frac{3}{5}=\frac{2}{5}
\end{aligned}
$$

(6) $y=0.4$ II

$$
V=(x, y)=(3 / 5,2 / 5)=\left(P_{A}, P_{B}\right)
$$

In the long run he coll 8 moke filter cigarette $\frac{3}{5}$ (er) $60 \% \varphi$ the time

* Three Boys A, B, C are throwing ball to each other A always throws the Ban to B \& B always throws the Ball to C, C is jeyt al likely to throw the ball to B as to A. If C was fingt perron to throw the ball find the probability that after 3 throws.
(i) A hay the ball
(ii) B hay the ball
(iii) C hay the ball

Sol: state space $=\left\{\begin{array}{lll}A B C\end{array}\right\}$
tep.m
\qquad

$$
P=A\left[\begin{array}{ccc}
A & B & C \\
B & 1 & 0 \\
0 & 0 & 1 \\
1 / 2 & 1 / 2 & 0
\end{array}\right]
$$

Initially if C has ball initial probability vector

$$
p(0)=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)
$$

since the probability are desired after three rows we have to find $p^{3}=p^{(0)} \cdot p^{3}$

$$
p^{(3)}=p^{(0)} p^{(3)}=(1 / 4,1 / 4,1 / 2)
$$

After 3 throws the probability that ball is with A is $1 / 4, B$ is $/ 4$ and C is $1 / 2$.

* Two boys $\mathrm{Br}_{1}, \mathrm{~B}_{2}$ \& two Girls G1, G2 are throwing ball from one to other. Each boy throws the ball to the other boy with probability $1 / 2$ and to each girl with probability $1 / 4$. on otherhand each girl throws the ball
to each boy with probability $1 / 2$ and never to other girl. In the long run how often dou each revive the ball.

Son? State space $=\left\{B_{1}, B_{2}, G_{1}, G_{2}\right\}$ and the associated t.P.M P is as follows

$$
P=B_{1}\left[\begin{array}{cccc}
B_{1} & B_{2} & G_{1} & G_{2} \\
B_{2} & 1 / 2 & 1 / 4 & 1 / 4 \\
G_{1} & 0 & 1 / 4 & 1 / 4 \\
G_{2} & 1 / 2 & 1 / 2 & 0 \\
1 / 2 & 1 / 2 & 0 & 0
\end{array}\right]
$$

we need to find the fixed probability vector $V=(a, b, c, d)$

$$
\text { O; } \quad V P=V
$$

$$
\left(\begin{array}{llll}
a & b & c & d
\end{array}\right)\left[\begin{array}{cccc}
0 & 1 / 2 & 1 / 4 & 1 / 4 \\
1 / 2 & 0 & 1 / 4 & 1 / 4 \\
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]
$$

$$
\begin{aligned}
& \frac{a}{4}+b / 4 \\
& a+b=1 \\
& \omega \\
& \text { (2) } \Rightarrow \\
& \text { (2) } \Rightarrow \\
& \text { (3) } \Rightarrow \\
& \text { (1) } \Rightarrow \\
& V=C \\
& \text { uni }
\end{aligned}
$$

$$
[b / 2+c / 2+d / 2, \quad a / 2+c / 2+d / 2, \quad a / 4+b / 4, \quad a / 4+b / 4]=[a b c c d]
$$

$$
\frac{b}{2}+\frac{c}{2}+\frac{d}{2}=a, \quad \frac{a}{2}+\frac{c}{2}+\frac{d}{2}=b
$$

$$
\begin{equation*}
b+c+d=2 a \quad a+c+d=2 b \tag{1}
\end{equation*}
$$

\qquad

$$
\begin{align*}
& a+b / 4=c, \quad a / 4+b / u=d \\
& =a+b=4 c,-(3) \quad a+b=4 d-\text { (4) } \tag{4}\\
& a \cdot k \cdot=\quad a+b+c+d=1 \\
& a+c+d=1-a \\
& \\
&
\end{align*}
$$

$$
\begin{aligned}
& \text { (1) } \Rightarrow \quad 1-a=2 a \\
& 3 a=1 \\
& a=1 / 3 \\
& \text { (1) } \Rightarrow 1-b=2 b \\
& 3 b=1 \Rightarrow b=1 / 3
\end{aligned}
$$

(3) $\Rightarrow 1 / 3+1 / 3=u c \Rightarrow u c=2 / 3 \Rightarrow c=1 / 6$
(11) $\Rightarrow 1 / 3+1 / 3=4 d \Rightarrow 4 d=2 / 3 \Rightarrow d=1 / 6$
$V=(1 / 3,1 / 3,1 / 6,1 / 6)$ y the required unique fixed probability Yector

$$
6 / 4]=[a b c d]
$$

